Enhanced bi-layer scheduling strategies for the cascade hydropower-photovoltaic complementary system using a novel meta-heuristic algorithm

Improving energy efficiency is crucial for China’s power industry to meet global energy conservation and emission reduction goals. The rapid development of photovoltaic (PV) and hydropower has greatly assisted in the construction of China’s novel power system. The stochastic characteristics of PV po...

Full description

Bibliographic Details
Main Authors: Li Shen, Yiyu Wen, Qing Wang, Peng Zhang
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-01-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2023.1335683/full
Description
Summary:Improving energy efficiency is crucial for China’s power industry to meet global energy conservation and emission reduction goals. The rapid development of photovoltaic (PV) and hydropower has greatly assisted in the construction of China’s novel power system. The stochastic characteristics of PV power generation pose significant challenges to the reliable and economical scheduling of power systems. In fact, the cascade hydropower station can effectively address the issue. To fully utilize the advantages of hydropower, this paper proposes a bi-layer scheduling optimization model for the cascade hydro-PV complementary system considering power market. The upper-layer model simultaneously maximizes the benefit and minimizes the output volatility of the complementary system. The lower-layer model carries out market clearing with the objective of social cost. Besides, PV uncertainty and market price volatility are considered in the decision-making process for power market transactions. To solve the bi-layer model, a novel meta-heuristic algorithm (geometric mean optimizer) is applied, demonstrating excellent performance compared to similar methods. For the complementary system, the results show that its total power output can be improved, and its output volatility can be effectively alleviated.
ISSN:2296-598X