A Bioluminescent Biosensor for Quantifying the Interaction of SARS-CoV-2 and Its Receptor ACE2 in Cells and In Vitro

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently spreading and mutating with increasing speed worldwide. Therefore, there is an urgent need for a simple, sensitive, and high-throughput (HTP) assay to quantify virus–host interactions in order to quickly evaluate the infec...

Full description

Bibliographic Details
Main Authors: Xiaolong Yang, Lidong Liu, Yawei Hao, Eva So, Sahar Sarmasti Emami, Derek Zhang, Yanping Gong, Prameet M. Sheth, Yutian Wang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/13/6/1055
Description
Summary:The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently spreading and mutating with increasing speed worldwide. Therefore, there is an urgent need for a simple, sensitive, and high-throughput (HTP) assay to quantify virus–host interactions in order to quickly evaluate the infectious ability of mutant viruses and to develop or validate virus-inhibiting drugs. Here, we developed an ultrasensitive bioluminescent biosensor to evaluate virus–cell interactions by quantifying the interaction between the SARS-CoV-2 receptor binding domain (RBD) and its cellular receptor angiotensin-converting enzyme 2 (ACE2) both in living cells and in vitro. We have successfully used this novel biosensor to analyze SARS-CoV-2 RBD mutants and evaluated candidate small molecules (SMs), antibodies, and peptides that may block RBD:ACE2 interaction. This simple, rapid, and HTP biosensor tool will significantly expedite the detection of viral mutants and the anti-COVID-19 drug discovery process.
ISSN:1999-4915