A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression

The cloud-free monthly composite of global nighttime light (NTL) data of the Suomi National Polar-orbiting Partnership with the Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) day/night band (DNB) provides indispensable indications of human activities and settlements. However, the coarse spati...

Full description

Bibliographic Details
Main Authors: Yang Ye, Linyan Huang, Qiming Zheng, Chenxin Liang, Baiyu Dong, Jinsong Deng, Xiuzhen Han
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:International Journal of Applied Earth Observations and Geoinformation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0303243421002208
_version_ 1829459202400059392
author Yang Ye
Linyan Huang
Qiming Zheng
Chenxin Liang
Baiyu Dong
Jinsong Deng
Xiuzhen Han
author_facet Yang Ye
Linyan Huang
Qiming Zheng
Chenxin Liang
Baiyu Dong
Jinsong Deng
Xiuzhen Han
author_sort Yang Ye
collection DOAJ
description The cloud-free monthly composite of global nighttime light (NTL) data of the Suomi National Polar-orbiting Partnership with the Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) day/night band (DNB) provides indispensable indications of human activities and settlements. However, the coarse spatial resolution (15 arc sec) of NTL imagery greatly restricts its application potential. This study proposes a feasible framework to downscale NPP-VIIRS NTL using muti-source spatial variables and geographically weighted regression (GWR) method. High-resolution auxiliary variables were acquired from the Landsat 8 OLI/ TIRS and social media platforms. GWR-based downscaling procedures were consequently implemented to obtain NTL at a 100-m resolution. The downscaled NTL data were validated against Loujia1-01 imagery based on the coefficient of determination (R2) and root-mean-square error (RMSE). The results suggest that the data quality was suitably improved after downscaling, yielding higher R2 (0.604 vs. 0.568) and lower RMSE (8.828 vs. 9.870 nW/cm2/sr) values than those of the original NTL data. Finally, the NTL was extendedly applied to detect impervious surfaces, and the downscaled NTL had higher accuracy than the original NTL. Therefore, this study facilitates data quality improvement of NPP-VIIRS NTL imagery by downscaling, thus enabling more accurate applications.
first_indexed 2024-12-12T11:15:09Z
format Article
id doaj.art-b216a57224f64f638fc2b1c1e6ad95e3
institution Directory Open Access Journal
issn 1569-8432
language English
last_indexed 2024-12-12T11:15:09Z
publishDate 2021-12-01
publisher Elsevier
record_format Article
series International Journal of Applied Earth Observations and Geoinformation
spelling doaj.art-b216a57224f64f638fc2b1c1e6ad95e32022-12-22T00:26:10ZengElsevierInternational Journal of Applied Earth Observations and Geoinformation1569-84322021-12-01104102513A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regressionYang Ye0Linyan Huang1Qiming Zheng2Chenxin Liang3Baiyu Dong4Jinsong Deng5Xiuzhen Han6College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, ChinaBusiness College, Zhejiang University City College, Hangzhou 310015, ChinaCentre for Nature-Based Climate Solutions, Department of Biological Sciences, National University of Singapore, Singapore 117558, SingaporeCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, ChinaCollege of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Correspondence author.National Satellite Meteorological Centre, China Meteorological Administration, Beijing 100081, China; Correspondence author.The cloud-free monthly composite of global nighttime light (NTL) data of the Suomi National Polar-orbiting Partnership with the Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) day/night band (DNB) provides indispensable indications of human activities and settlements. However, the coarse spatial resolution (15 arc sec) of NTL imagery greatly restricts its application potential. This study proposes a feasible framework to downscale NPP-VIIRS NTL using muti-source spatial variables and geographically weighted regression (GWR) method. High-resolution auxiliary variables were acquired from the Landsat 8 OLI/ TIRS and social media platforms. GWR-based downscaling procedures were consequently implemented to obtain NTL at a 100-m resolution. The downscaled NTL data were validated against Loujia1-01 imagery based on the coefficient of determination (R2) and root-mean-square error (RMSE). The results suggest that the data quality was suitably improved after downscaling, yielding higher R2 (0.604 vs. 0.568) and lower RMSE (8.828 vs. 9.870 nW/cm2/sr) values than those of the original NTL data. Finally, the NTL was extendedly applied to detect impervious surfaces, and the downscaled NTL had higher accuracy than the original NTL. Therefore, this study facilitates data quality improvement of NPP-VIIRS NTL imagery by downscaling, thus enabling more accurate applications.http://www.sciencedirect.com/science/article/pii/S0303243421002208Nighttime light (NTL)DownscalingGeographically weighted regression (GWR)Impervious surface detection
spellingShingle Yang Ye
Linyan Huang
Qiming Zheng
Chenxin Liang
Baiyu Dong
Jinsong Deng
Xiuzhen Han
A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
International Journal of Applied Earth Observations and Geoinformation
Nighttime light (NTL)
Downscaling
Geographically weighted regression (GWR)
Impervious surface detection
title A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
title_full A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
title_fullStr A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
title_full_unstemmed A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
title_short A feasible framework to downscale NPP-VIIRS nighttime light imagery using multi-source spatial variables and geographically weighted regression
title_sort feasible framework to downscale npp viirs nighttime light imagery using multi source spatial variables and geographically weighted regression
topic Nighttime light (NTL)
Downscaling
Geographically weighted regression (GWR)
Impervious surface detection
url http://www.sciencedirect.com/science/article/pii/S0303243421002208
work_keys_str_mv AT yangye afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT linyanhuang afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT qimingzheng afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT chenxinliang afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT baiyudong afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT jinsongdeng afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT xiuzhenhan afeasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT yangye feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT linyanhuang feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT qimingzheng feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT chenxinliang feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT baiyudong feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT jinsongdeng feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression
AT xiuzhenhan feasibleframeworktodownscalenppviirsnighttimelightimageryusingmultisourcespatialvariablesandgeographicallyweightedregression