Summary: | Our objective was to analyze the evolution of resistance mutations (RM) and viral tropism of multi-drug-resistant (MDR) strains detected at primary HIV-1 infection (PHI). MDR HIV strain was defined as the presence of genotypic resistance to at least 1 antiretroviral of the 3 classes. Tropism determinations (CCR5 or CXCR4) were performed on baseline plasma HIV-RNA and/or PBMC-HIV-DNA samples, then during follow-up using population-based sequencing of V3 loop and phenotypic tests. Clonal analysis was performed at baseline for env, RT and protease genes, and for HIV-DNA env gene during follow-up. Five patients were eligible. At baseline, RT, protease and env clones from HIV-RNA and HIV-DNA were highly homogenous for each patient; genotypic tropism was R5 in 3 (A,B,C) and X4 in 2 patients (D,E). MDR strains persisted in HIV-DNA throughout follow-up in all patients. For patient A, tropism remained R5 with concordance between phenotypic and genotypic tests. Clonal analysis on Month (M) 78 HIV-DNA evidenced exclusively R5 (21/21) variants. In patient B, clonal analysis at M36 showed exclusively R5 variants (19/19) using both genotypic and phenotypic tests. In patient C, baseline tropism was R5 by genotypic test and R5/X4 by phenotypic test. An expansion of these X4 clones was evidenced by clonal analysis on M72 HIV-DNA (12/14 X4 and 2/14 R5 variants). In patient D, baseline tropism was X4 with concordance between both techniques and HIV-RNA and HIV-DNA remained X4-tropic up to M72, confirmed by the clonal analysis. Patient E harboured highly homogenous X4-using population at baseline; tropism was unchanged at M1 and M18. In all patients, the initial MDR population was highly homogenous initially, supporting the early expansion of a monoclonal population and its long-term persistence. X4-tropic variants present at baseline were still exclusive (patients D and E) or dominant (at least one time point, patient C) far from PHI.
|