Adjustment of Force–Gradient Operator in Symplectic Methods

Many force–gradient explicit symplectic integration algorithms have been designed for the Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mi>T...

Full description

Bibliographic Details
Main Authors: Lina Zhang, Xin Wu, Enwei Liang
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/21/2718
_version_ 1797512098604908544
author Lina Zhang
Xin Wu
Enwei Liang
author_facet Lina Zhang
Xin Wu
Enwei Liang
author_sort Lina Zhang
collection DOAJ
description Many force–gradient explicit symplectic integration algorithms have been designed for the Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi mathvariant="bold">p</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></semantics></math></inline-formula> with kinetic energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mrow><mo>(</mo><mi mathvariant="bold">p</mi><mo>)</mo></mrow><mo>=</mo><msup><mi mathvariant="bold">p</mi><mn>2</mn></msup><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> in the existing references. When a force–gradient operator is appropriately adjusted as a new operator, it is still suitable for a class of Hamiltonian problems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mi>K</mi><mo>(</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi mathvariant="bold">q</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></semantics></math></inline-formula> with integrable part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mrow><mo>(</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>p</mi><mi>i</mi></msub><msub><mi>p</mi><mi>j</mi></msub><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>b</mi><mi>i</mi></msub><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>b</mi><mi>i</mi></msub><mo>=</mo><msub><mi>b</mi><mi>i</mi></msub><mrow><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are functions of coordinates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">q</mi></semantics></math></inline-formula>. The newly adjusted operator is not a force–gradient operator but is similar to the momentum-version operator associated to the potential <i>V</i>. The newly extended (or adjusted) algorithms are no longer solvers of the original Hamiltonian, but are solvers of slightly modified Hamiltonians. They are explicit symplectic integrators with symmetry or time reversibility. Numerical tests show that the standard symplectic integrators without the new operator are generally poorer than the corresponding extended methods with the new operator in computational accuracies and efficiencies. The optimized methods have better accuracies than the corresponding non-optimized counterparts. Among the tested symplectic methods, the two extended optimized seven-stage fourth-order methods of Omelyan, Mryglod and Folk exhibit the best numerical performance. As a result, one of the two optimized algorithms is used to study the orbital dynamical features of a modified Hénon–Heiles system and a spring pendulum. These extended integrators allow for integrations in Hamiltonian problems, such as the spiral structure in self-consistent models of rotating galaxies and the spiral arms in galaxies.
first_indexed 2024-03-10T05:57:06Z
format Article
id doaj.art-b22e3e6ed7754ffa8c8a352450b3c3d6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T05:57:06Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b22e3e6ed7754ffa8c8a352450b3c3d62023-11-22T21:17:52ZengMDPI AGMathematics2227-73902021-10-01921271810.3390/math9212718Adjustment of Force–Gradient Operator in Symplectic MethodsLina Zhang0Xin Wu1Enwei Liang2School of Physical Science and Technology, Guangxi University, Nanning 530004, ChinaSchool of Physical Science and Technology, Guangxi University, Nanning 530004, ChinaSchool of Physical Science and Technology, Guangxi University, Nanning 530004, ChinaMany force–gradient explicit symplectic integration algorithms have been designed for the Hamiltonian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mi>T</mi><mo>(</mo><mi mathvariant="bold">p</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></semantics></math></inline-formula> with kinetic energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mrow><mo>(</mo><mi mathvariant="bold">p</mi><mo>)</mo></mrow><mo>=</mo><msup><mi mathvariant="bold">p</mi><mn>2</mn></msup><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> in the existing references. When a force–gradient operator is appropriately adjusted as a new operator, it is still suitable for a class of Hamiltonian problems <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mi>K</mi><mo>(</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi mathvariant="bold">q</mi><mo>)</mo><mo>+</mo><mi>V</mi><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></semantics></math></inline-formula> with integrable part <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mrow><mo>(</mo><mi mathvariant="bold">p</mi><mo>,</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>p</mi><mi>i</mi></msub><msub><mi>p</mi><mi>j</mi></msub><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>b</mi><mi>i</mi></msub><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>b</mi><mi>i</mi></msub><mo>=</mo><msub><mi>b</mi><mi>i</mi></msub><mrow><mo>(</mo><mi mathvariant="bold">q</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are functions of coordinates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">q</mi></semantics></math></inline-formula>. The newly adjusted operator is not a force–gradient operator but is similar to the momentum-version operator associated to the potential <i>V</i>. The newly extended (or adjusted) algorithms are no longer solvers of the original Hamiltonian, but are solvers of slightly modified Hamiltonians. They are explicit symplectic integrators with symmetry or time reversibility. Numerical tests show that the standard symplectic integrators without the new operator are generally poorer than the corresponding extended methods with the new operator in computational accuracies and efficiencies. The optimized methods have better accuracies than the corresponding non-optimized counterparts. Among the tested symplectic methods, the two extended optimized seven-stage fourth-order methods of Omelyan, Mryglod and Folk exhibit the best numerical performance. As a result, one of the two optimized algorithms is used to study the orbital dynamical features of a modified Hénon–Heiles system and a spring pendulum. These extended integrators allow for integrations in Hamiltonian problems, such as the spiral structure in self-consistent models of rotating galaxies and the spiral arms in galaxies.https://www.mdpi.com/2227-7390/9/21/2718symplectic integrationforce gradientchaosHamiltonian systems
spellingShingle Lina Zhang
Xin Wu
Enwei Liang
Adjustment of Force–Gradient Operator in Symplectic Methods
Mathematics
symplectic integration
force gradient
chaos
Hamiltonian systems
title Adjustment of Force–Gradient Operator in Symplectic Methods
title_full Adjustment of Force–Gradient Operator in Symplectic Methods
title_fullStr Adjustment of Force–Gradient Operator in Symplectic Methods
title_full_unstemmed Adjustment of Force–Gradient Operator in Symplectic Methods
title_short Adjustment of Force–Gradient Operator in Symplectic Methods
title_sort adjustment of force gradient operator in symplectic methods
topic symplectic integration
force gradient
chaos
Hamiltonian systems
url https://www.mdpi.com/2227-7390/9/21/2718
work_keys_str_mv AT linazhang adjustmentofforcegradientoperatorinsymplecticmethods
AT xinwu adjustmentofforcegradientoperatorinsymplecticmethods
AT enweiliang adjustmentofforcegradientoperatorinsymplecticmethods