Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences

Abstract The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains o...

Full description

Bibliographic Details
Main Authors: Muhammad Zain Yousaf, Muhammad Abbas, Tahir Nazir, Farah Aini Abdullah, Asnake Birhanu, Homan Emadifar
Format: Article
Language:English
Published: Nature Portfolio 2024-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-55786-z
_version_ 1797259303945502720
author Muhammad Zain Yousaf
Muhammad Abbas
Tahir Nazir
Farah Aini Abdullah
Asnake Birhanu
Homan Emadifar
author_facet Muhammad Zain Yousaf
Muhammad Abbas
Tahir Nazir
Farah Aini Abdullah
Asnake Birhanu
Homan Emadifar
author_sort Muhammad Zain Yousaf
collection DOAJ
description Abstract The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain’s base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system’s potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.
first_indexed 2024-04-24T23:07:18Z
format Article
id doaj.art-b2302b4aebf6420b8fa4f14c82912818
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-24T23:07:18Z
publishDate 2024-03-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-b2302b4aebf6420b8fa4f14c829128182024-03-17T12:24:59ZengNature PortfolioScientific Reports2045-23222024-03-0114112310.1038/s41598-024-55786-zInvestigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciencesMuhammad Zain Yousaf0Muhammad Abbas1Tahir Nazir2Farah Aini Abdullah3Asnake Birhanu4Homan Emadifar5Department of Mathematics, University of SargodhaDepartment of Mathematics, University of SargodhaDepartment of Mathematics, University of SargodhaSchool of Mathematical Sciences, Universiti Sains MalaysiaDepartment of Mathematics, College of Science, Hawassa UniversityDepartment of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha UniversityAbstract The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain’s base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system’s potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.https://doi.org/10.1038/s41598-024-55786-zModified extended Fan sub equation approachDouble-chain deoxyribonucleic acid modelExact traveling wave solutions3D graph2D line graphContour plot
spellingShingle Muhammad Zain Yousaf
Muhammad Abbas
Tahir Nazir
Farah Aini Abdullah
Asnake Birhanu
Homan Emadifar
Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
Scientific Reports
Modified extended Fan sub equation approach
Double-chain deoxyribonucleic acid model
Exact traveling wave solutions
3D graph
2D line graph
Contour plot
title Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
title_full Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
title_fullStr Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
title_full_unstemmed Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
title_short Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences
title_sort investigation of the dynamical structures of double chain deoxyribonucleic acid model in biological sciences
topic Modified extended Fan sub equation approach
Double-chain deoxyribonucleic acid model
Exact traveling wave solutions
3D graph
2D line graph
Contour plot
url https://doi.org/10.1038/s41598-024-55786-z
work_keys_str_mv AT muhammadzainyousaf investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences
AT muhammadabbas investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences
AT tahirnazir investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences
AT farahainiabdullah investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences
AT asnakebirhanu investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences
AT homanemadifar investigationofthedynamicalstructuresofdoublechaindeoxyribonucleicacidmodelinbiologicalsciences