Miedzy oczywistością a dedukcją. Platon i Euklides o równości

We confront Plato's understanding of equality in geometry with that of Euclid. We comment on Phaedo, 74b-c, Meno, 81e-85d and Elements, Book I. We distinguish between two meanings of equality, congruence and equality of the area, and show that in Plato equality means congruence. In Euclid, star...

Full description

Bibliographic Details
Main Authors: Piotr Błaszczyk, Kazimierz Mrówka
Format: Article
Language:deu
Published: Copernicus Center Press 2011-06-01
Series:Zagadnienia Filozoficzne w Nauce
Subjects:
Online Access:http://zfn.edu.pl/index.php/zfn/article/view/143
_version_ 1818360125286514688
author Piotr Błaszczyk
Kazimierz Mrówka
author_facet Piotr Błaszczyk
Kazimierz Mrówka
author_sort Piotr Błaszczyk
collection DOAJ
description We confront Plato's understanding of equality in geometry with that of Euclid. We comment on Phaedo, 74b-c, Meno, 81e-85d and Elements, Book I. We distinguish between two meanings of equality, congruence and equality of the area, and show that in Plato equality means congruence. In Euclid, starting with the first definitions until Proposition I.34, equality means congruence. In the proof of Proposition I.35 equality gains a new meaning and two figures that are not congruent, and in this sense unequal, are considered to be equal. While Plato's geometry is based on self-evident facts, Euclid's geometry rests on deduction and the axioms that are by no means self-evident. However, the shift of meaning from congruence to equality of the area can be substantiated by reference to Euclid's axioms of equality. Finally, we present an ontological interpretation of the two attitudes to equality that we find in Plato's and Euclid's writings.
first_indexed 2024-12-13T20:55:49Z
format Article
id doaj.art-b23918e2b18940a2ae04225e497c8e35
institution Directory Open Access Journal
issn 0867-8286
2451-0602
language deu
last_indexed 2024-12-13T20:55:49Z
publishDate 2011-06-01
publisher Copernicus Center Press
record_format Article
series Zagadnienia Filozoficzne w Nauce
spelling doaj.art-b23918e2b18940a2ae04225e497c8e352022-12-21T23:31:46ZdeuCopernicus Center PressZagadnienia Filozoficzne w Nauce0867-82862451-06022011-06-0148127147137Miedzy oczywistością a dedukcją. Platon i Euklides o równościPiotr Błaszczyk0Kazimierz Mrówka1Uniwersytet Pedagogiczny w Krakowie, Instytut MatematykiUniwersytet Pedagogiczny w KrakowieWe confront Plato's understanding of equality in geometry with that of Euclid. We comment on Phaedo, 74b-c, Meno, 81e-85d and Elements, Book I. We distinguish between two meanings of equality, congruence and equality of the area, and show that in Plato equality means congruence. In Euclid, starting with the first definitions until Proposition I.34, equality means congruence. In the proof of Proposition I.35 equality gains a new meaning and two figures that are not congruent, and in this sense unequal, are considered to be equal. While Plato's geometry is based on self-evident facts, Euclid's geometry rests on deduction and the axioms that are by no means self-evident. However, the shift of meaning from congruence to equality of the area can be substantiated by reference to Euclid's axioms of equality. Finally, we present an ontological interpretation of the two attitudes to equality that we find in Plato's and Euclid's writings.http://zfn.edu.pl/index.php/zfn/article/view/143equalityEuclidPlato
spellingShingle Piotr Błaszczyk
Kazimierz Mrówka
Miedzy oczywistością a dedukcją. Platon i Euklides o równości
Zagadnienia Filozoficzne w Nauce
equality
Euclid
Plato
title Miedzy oczywistością a dedukcją. Platon i Euklides o równości
title_full Miedzy oczywistością a dedukcją. Platon i Euklides o równości
title_fullStr Miedzy oczywistością a dedukcją. Platon i Euklides o równości
title_full_unstemmed Miedzy oczywistością a dedukcją. Platon i Euklides o równości
title_short Miedzy oczywistością a dedukcją. Platon i Euklides o równości
title_sort miedzy oczywistoscia a dedukcja platon i euklides o rownosci
topic equality
Euclid
Plato
url http://zfn.edu.pl/index.php/zfn/article/view/143
work_keys_str_mv AT piotrbłaszczyk miedzyoczywistosciaadedukcjaplatonieuklidesorownosci
AT kazimierzmrowka miedzyoczywistosciaadedukcjaplatonieuklidesorownosci