Materials characterization of advanced fillers for composites engineering applications

Four different minerals were investigated; hollow spheres of calcium carbonate, platy mica, needle like wollastonite and glassy perlite and characterized via iGC for surface energy, Freeman powder rheology for flow characterization, cyclic uniaxial die compaction for modulus of elasticity and freque...

Full description

Bibliographic Details
Main Authors: Lapčík Lubomír, Vašina Martin, Lapčíková Barbora, Hui David, Otyepková Eva, Greenwood Richard W., Waters Kristian E., Vlček Jakub
Format: Article
Language:English
Published: De Gruyter 2019-12-01
Series:Nanotechnology Reviews
Subjects:
Online Access:https://doi.org/10.1515/ntrev-2019-0045
Description
Summary:Four different minerals were investigated; hollow spheres of calcium carbonate, platy mica, needle like wollastonite and glassy perlite and characterized via iGC for surface energy, Freeman powder rheology for flow characterization, cyclic uniaxial die compaction for modulus of elasticity and frequency dependent sound absorption properties. Particle surface energy and particle shape strongly affected the packing density of powder beds. In the case of higher porosity and thus lower bulk density, the powders acoustic absorption was higher in comparison with higher packing density materials. Surface energy profiles and surface energy distributions revealed clear convergence with powder rheology data, where the character of the powder flow at defined consolidation stresses was mirroring either the high cohesion powders properties connected with the high surface energy or powder free flowing characteristics, as reflected in low cohesion of the powder matrix.
ISSN:2191-9097