A "ligand-targeting" peptide-drug conjugate: Targeted intracellular drug delivery by VEGF-binding helix-loop-helix peptides via receptor-mediated endocytosis.

As a new alternative to antibody-drug conjugates, we generated "ligand-targeting" peptide-drug conjugates (PDCs), which utilize receptor-mediated endocytosis for targeted intracellular drug delivery. The PDC makes a complex with an extracellular ligand and then binds to the receptor on the...

Full description

Bibliographic Details
Main Authors: Masataka Michigami, Kentaro Takahashi, Haruna Yamashita, Zhengmao Ye, Ikuhiko Nakase, Ikuo Fujii
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0247045
Description
Summary:As a new alternative to antibody-drug conjugates, we generated "ligand-targeting" peptide-drug conjugates (PDCs), which utilize receptor-mediated endocytosis for targeted intracellular drug delivery. The PDC makes a complex with an extracellular ligand and then binds to the receptor on the cell surface to stimulate intracellular uptake via the endocytic pathway. A helix-loop-helix (HLH) peptide was designed as the drug carrier and randomized to give a conformationally constrained peptide library. The phage-displayed library was screened against vascular endothelial growth factor (VEGF) to yield the binding peptide M49, which exhibited strong binding affinity (KD = 0.87 nM). The confocal fluorescence microscopy revealed that peptide M49 formed a ternary complex with VEGF and its receptor, which was then internalized into human umbilical vein endothelial cells (HUVECs) via VEGF receptor-mediated endocytosis. The backbone-cyclized peptide M49K was conjugated with a drug, monomethyl auristatin E, to afford a PDC, which inhibited VEGF-induced HUVEC proliferation. HLH peptides and their PDCs have great potential as a new modality for targeted molecular therapy.
ISSN:1932-6203