Extracellular Matrix Expression in Human Pancreatic Fat Cells of Patients with Normal Glucose Regulation, Prediabetes and Type 2 Diabetes

Previously, we found that human pancreatic preadipocytes (PPAs) and islets influence each other and that the crosstalk with the fatty liver via the hepatokine fetuin-A/palmitate induces inflammatory responses. Here, we examined whether the mRNA-expression of pancreatic extracellular matrix (ECM)-for...

Full description

Bibliographic Details
Main Authors: Dorothea Siegel-Axel, Morgana Barroso Oquendo, Felicia Gerst, Falko Fend, Robert Wagner, Martin Heni, Alfred Königsrainer, Hans-Ulrich Häring, Andreas Fritsche, Erwin Schleicher, Andreas L. Birkenfeld, Norbert Stefan
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/13/11169
Description
Summary:Previously, we found that human pancreatic preadipocytes (PPAs) and islets influence each other and that the crosstalk with the fatty liver via the hepatokine fetuin-A/palmitate induces inflammatory responses. Here, we examined whether the mRNA-expression of pancreatic extracellular matrix (ECM)-forming and -degrading components differ in PPAs from individuals with normal glucose regulation (PPAs-NGR), prediabetes (PPAs-PD), and type 2 diabetes (PPAs-T2D), and whether fetuin-A/palmitate impacts ECM-formation/degradation and associated monocyte invasion. Human pancreatic resections were analyzed (immuno)histologically. PPAs were studied for mRNA expression by real-time PCR and protein secretion by Luminex analysis. Furthermore, co-cultures with human islets and monocyte migration assays in Transwell plates were conducted. We found that in comparison with NGR-PPAs, TIMP-2 mRNA levels were lower in PPAs-PD, and TGF-β1 mRNA levels were higher in PPAs-T2D. Fetuin-A/palmitate reduced fibronectin, decorin, TIMP-1/-2 and TGF-ß1 mRNA levels. Only fibronectin was strongly downregulated by fetuin-A/palmitate independently of the glycemic status. Co-culturing of PPAs with islets increased TIMP-1 mRNA expression in islets. Fetuin-A/palmitate increased MMP-1, usherin and dermatopontin mRNA-levels in co-cultured islets. A transmigration assay showed increased monocyte migration towards PPAs, which was enhanced by fetuin-A/palmitate. This was more pronounced in PPAs-T2D. The expression of distinct ECM components differs in PPAs-PD and PPAs-T2D compared to PPAs-NGR, suggesting that ECM alterations can occur even in mild hyperglycemia. Fetuin-A/palmitate impacts on ECM formation/degradation in PPAs and co-cultured islets. Fetuin-A/palmitate also enhances monocyte migration, a process which might impact on matrix turnover.
ISSN:1661-6596
1422-0067