Numerical Simulation of Methane and Propane Reforming Over a Porous Rh/Al<sub>2</sub>O<sub>3</sub> Catalyst in Stagnation-Flows: Impact of Internal and External Mass Transfer Limitations on Species Profiles

Hydrogen production by catalytic partial oxidation and steam reforming of methane and propane towards synthesis gas are numerically investigated in stagnation-flow over a disc coated with a porous Rh/Al<sub>2</sub>O<sub>3</sub> layer. A one-dimensional flow field is coupled w...

Full description

Bibliographic Details
Main Authors: Hüseyin Karadeniz, Canan Karakaya, Steffen Tischer, Olaf Deutschmann
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/8/915
Description
Summary:Hydrogen production by catalytic partial oxidation and steam reforming of methane and propane towards synthesis gas are numerically investigated in stagnation-flow over a disc coated with a porous Rh/Al<sub>2</sub>O<sub>3</sub> layer. A one-dimensional flow field is coupled with three models for internal diffusion and with a 62-step surface reaction mechanism. Numerical simulations are conducted with the recently developed computer code DETCHEM<sup>STAG</sup>. Dusty-Gas model, a reaction-diffusion model and a simple effectiveness factor model, are alternatively used in simulations to study the internal mass transfer inside the 100 µm thick washcoat layer. Numerically predicted species profiles in the external boundary layer agree well with the recently published experimental data. All three models for internal diffusion exhibit strong species concentration gradients in the catalyst layer. In partial oxidation conditions, a thin total oxidation zone occurs close to the gas-washcoat interface, followed by a zone of steam and dry reforming of methane. Increasing the reactor pressure and decreasing the inlet flow velocity increases/decreases the external/internal mass transfer limitations. The comparison of reaction-diffusion and Dusty-Gas model results reveal the insignificance of convective flow on species transport inside the washcoat. Simulations, which additionally solve a heat transport equation, do not show any temperature gradients inside the washcoat.
ISSN:2073-4344