Summary: | Abstract Efforts to mitigate the increasing emergence of antimicrobial resistance (AMR) will benefit from a One Health perspective, as over half of animal antimicrobials are also considered medically important in humans, and AMR can be maintained in the environment. This is especially pertinent to low- and middle-income countries and in community settings, where an estimated 80% of all antibiotics are used. This study features AMR genes found among humans, animals, and water at an urban informal settlement in Nepal with intensifying livestock production. We sampled humans, chickens, ducks, swine, and water clustered by household, as well as rodents and shrews near dwellings, concurrently in time in July 2017 in southeastern Kathmandu along the Manohara river. Real-time qualitative PCR was performed to screen for 88 genes. Our results characterize the animal-human-environmental interfaces related to the occurrence of specific resistance genes (bla SHV-1 (SHV(238G240E) strain), QnrS, ermC, tetA, tetB, aacC2, aadA1) associated with antibiotics of global health importance that comprise several drug classes, including aminoglycosides, beta-lactams, tetracyclines, macrolides, and fluoroquinolones. By characterizing risk factors across AMR genes of public health importance, this research highlights potential transmission pathways for further investigation and provides prioritization of community-based prevention and intervention efforts for disrupting AMR transmission of critically important antibiotics used in both humans and animals in Nepal.
|