Kondo interaction in FeTe and its potential role in the magnetic order

Abstract Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence fo...

Full description

Bibliographic Details
Main Authors: Younsik Kim, Min-Seok Kim, Dongwook Kim, Minjae Kim, Minsoo Kim, Cheng-Maw Cheng, Joonyoung Choi, Saegyeol Jung, Donghui Lu, Jong Hyuk Kim, Soohyun Cho, Dongjoon Song, Dongjin Oh, Li Yu, Young Jai Choi, Hyeong-Do Kim, Jung Hoon Han, Younjung Jo, Ji Hoon Shim, Jungpil Seo, Soonsang Huh, Changyoung Kim
Format: Article
Language:English
Published: Nature Portfolio 2023-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39827-1
Description
Summary:Abstract Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements. The Kondo lattice behavior is represented by the emergence of a sharp quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property measurements confirm the low-temperature Fermi liquid behavior and reveal successive coherent-incoherent crossover upon increasing temperature. We interpret the Kondo lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice behavior and long-range magnetic order.
ISSN:2041-1723