Copper Micro-Labyrinth with Graphene Skin: New Transparent Flexible Electrodes with Ultimate Low Sheet Resistivity and Superior Stability
We have developed self-assembled copper (Cu) micro-labyrinth (ML) with graphene skin for transparent flexible electrodes of optoelectronic devices. The Cu ML is simply formed by heating a thin Cu film with a 100-nm thickness on a SiO2/Si substrate at 950 °C under hydrogen ambient to block the oxidat...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-09-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | http://www.mdpi.com/2079-4991/6/9/161 |
Summary: | We have developed self-assembled copper (Cu) micro-labyrinth (ML) with graphene skin for transparent flexible electrodes of optoelectronic devices. The Cu ML is simply formed by heating a thin Cu film with a 100-nm thickness on a SiO2/Si substrate at 950 °C under hydrogen ambient to block the oxidation. Moreover, the Cu ML can have graphene skin at the surface by inserting carbo-hydroxyl molecules (CxHy) during heating due to the catalytic decomposition of C–H bonds on the Cu surface. The Cu ML with graphene skin (Cu ML-G) has superior sheet resistivity below 5 Ω/sq and mechanical flexibility without cracks at the bending radius of 0.1 cm. Although the transmittance of Cu ML-G is a little lower (70%~80%) than that of conventional metallic nanowires electrodes (such as Ag, ~90% at the visible wavelength), it has good thermal stability in conductivity without any damage at 200 °C due to a micro-sized pattern and graphene skin which prohibits the surface migration of Cu atoms. |
---|---|
ISSN: | 2079-4991 |