On Some Regular Two-Graphs up to 50 Vertices

Regular two-graphs on up to 36 vertices are classified, and recently, the classification of regular two-graphs on 38 and 42 vertices having at least one descendant with a nontrivial automorphism group has been performed. The first unclassified cases are those on 46 and 50 vertices. It is known that...

Full description

Bibliographic Details
Main Author: Marija Maksimović
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/408
_version_ 1797618079798132736
author Marija Maksimović
author_facet Marija Maksimović
author_sort Marija Maksimović
collection DOAJ
description Regular two-graphs on up to 36 vertices are classified, and recently, the classification of regular two-graphs on 38 and 42 vertices having at least one descendant with a nontrivial automorphism group has been performed. The first unclassified cases are those on 46 and 50 vertices. It is known that there are at least 97 regular two-graphs on 46 vertices leading to 2104 descendants and 54 regular two-graphs on 50 vertices leading to 785 descendants. In this paper, we classified all strongly regular graphs with parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>50</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>9</mn><mo>)</mo></mrow></semantics></math></inline-formula> that have <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Z</mi><mn>6</mn></msub></semantics></math></inline-formula> as the automorphism group and constructed regular two-graphs from SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula>, SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>50</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>9</mn><mo>)</mo></mrow></semantics></math></inline-formula> that have automorphisms of order six. In this way, we enumerated all regular two-graphs on up to 50 vertices that have at least one descendant with an automorphism group of order six or at least one strongly regular graph associated with an automorphism group of order six. We found 236 new regular two-graphs on 46 vertices leading to 3172 new SRG <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula> and 51 new regular two-graphs on 50 vertices leading to 398 new SRG <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-11T08:05:10Z
format Article
id doaj.art-b27249215ea848b5a47031d2b5537284
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T08:05:10Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-b27249215ea848b5a47031d2b55372842023-11-16T23:32:55ZengMDPI AGSymmetry2073-89942023-02-0115240810.3390/sym15020408On Some Regular Two-Graphs up to 50 VerticesMarija Maksimović0Faculty of Mathematics, University of Rijeka, 51000 Rijeka, CroatiaRegular two-graphs on up to 36 vertices are classified, and recently, the classification of regular two-graphs on 38 and 42 vertices having at least one descendant with a nontrivial automorphism group has been performed. The first unclassified cases are those on 46 and 50 vertices. It is known that there are at least 97 regular two-graphs on 46 vertices leading to 2104 descendants and 54 regular two-graphs on 50 vertices leading to 785 descendants. In this paper, we classified all strongly regular graphs with parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>50</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>9</mn><mo>)</mo></mrow></semantics></math></inline-formula> that have <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Z</mi><mn>6</mn></msub></semantics></math></inline-formula> as the automorphism group and constructed regular two-graphs from SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula>, SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and SRGs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>50</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>9</mn><mo>)</mo></mrow></semantics></math></inline-formula> that have automorphisms of order six. In this way, we enumerated all regular two-graphs on up to 50 vertices that have at least one descendant with an automorphism group of order six or at least one strongly regular graph associated with an automorphism group of order six. We found 236 new regular two-graphs on 46 vertices leading to 3172 new SRG <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>45</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>10</mn><mo>,</mo><mn>11</mn><mo>)</mo></mrow></semantics></math></inline-formula> and 51 new regular two-graphs on 50 vertices leading to 398 new SRG <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>49</mn><mo>,</mo><mn>24</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>12</mn><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2073-8994/15/2/408orbit matricesgraphstwo-graphsregular two-graphsstrongly regular graphs
spellingShingle Marija Maksimović
On Some Regular Two-Graphs up to 50 Vertices
Symmetry
orbit matrices
graphs
two-graphs
regular two-graphs
strongly regular graphs
title On Some Regular Two-Graphs up to 50 Vertices
title_full On Some Regular Two-Graphs up to 50 Vertices
title_fullStr On Some Regular Two-Graphs up to 50 Vertices
title_full_unstemmed On Some Regular Two-Graphs up to 50 Vertices
title_short On Some Regular Two-Graphs up to 50 Vertices
title_sort on some regular two graphs up to 50 vertices
topic orbit matrices
graphs
two-graphs
regular two-graphs
strongly regular graphs
url https://www.mdpi.com/2073-8994/15/2/408
work_keys_str_mv AT marijamaksimovic onsomeregulartwographsupto50vertices