BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells

Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD report...

Full description

Bibliographic Details
Main Authors: Maria Gomes Fernandes, Ruben Dries, Matthias S. Roost, Stefan Semrau, Ana de Melo Bernardo, Richard P. Davis, Ramprasad Ramakrishnan, Karoly Szuhai, Elke Maas, Lieve Umans, Vanesa Abon Escalona, Daniela Salvatori, Dieter Deforce, Wim Van Criekinge, Danny Huylebroeck, Christine Mummery, An Zwijsen, Susana M. Chuva de Sousa Lopes
Format: Article
Language:English
Published: Elsevier 2016-01-01
Series:Stem Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2213671115003483
_version_ 1819364692137607168
author Maria Gomes Fernandes
Ruben Dries
Matthias S. Roost
Stefan Semrau
Ana de Melo Bernardo
Richard P. Davis
Ramprasad Ramakrishnan
Karoly Szuhai
Elke Maas
Lieve Umans
Vanesa Abon Escalona
Daniela Salvatori
Dieter Deforce
Wim Van Criekinge
Danny Huylebroeck
Christine Mummery
An Zwijsen
Susana M. Chuva de Sousa Lopes
author_facet Maria Gomes Fernandes
Ruben Dries
Matthias S. Roost
Stefan Semrau
Ana de Melo Bernardo
Richard P. Davis
Ramprasad Ramakrishnan
Karoly Szuhai
Elke Maas
Lieve Umans
Vanesa Abon Escalona
Daniela Salvatori
Dieter Deforce
Wim Van Criekinge
Danny Huylebroeck
Christine Mummery
An Zwijsen
Susana M. Chuva de Sousa Lopes
author_sort Maria Gomes Fernandes
collection DOAJ
description Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation.
first_indexed 2024-12-24T23:02:59Z
format Article
id doaj.art-b277eb09b8a7405197a999545a52fb37
institution Directory Open Access Journal
issn 2213-6711
language English
last_indexed 2024-12-24T23:02:59Z
publishDate 2016-01-01
publisher Elsevier
record_format Article
series Stem Cell Reports
spelling doaj.art-b277eb09b8a7405197a999545a52fb372022-12-21T16:35:05ZengElsevierStem Cell Reports2213-67112016-01-0161859410.1016/j.stemcr.2015.11.012BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem CellsMaria Gomes Fernandes0Ruben Dries1Matthias S. Roost2Stefan Semrau3Ana de Melo Bernardo4Richard P. Davis5Ramprasad Ramakrishnan6Karoly Szuhai7Elke Maas8Lieve Umans9Vanesa Abon Escalona10Daniela Salvatori11Dieter Deforce12Wim Van Criekinge13Danny Huylebroeck14Christine Mummery15An Zwijsen16Susana M. Chuva de Sousa Lopes17Department Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, BelgiumDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsLeiden Institute of Physics, Leiden University, Leiden 2333 CA, the NetherlandsDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, BelgiumDepartment Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, BelgiumDepartment Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, BelgiumDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsLaboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, BelgiumMathematical Modelling, Statistics and Bio-informatics, Faculty Bioscience Engineering, Ghent University, Ghent 9000, BelgiumDepartment Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, Leuven 3000, BelgiumDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsDepartment Human Genetics, VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, BelgiumDepartment Anatomy and Embryology, Leiden University Medical Center, Leiden 2333 ZC, the NetherlandsNaive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation.http://www.sciencedirect.com/science/article/pii/S2213671115003483
spellingShingle Maria Gomes Fernandes
Ruben Dries
Matthias S. Roost
Stefan Semrau
Ana de Melo Bernardo
Richard P. Davis
Ramprasad Ramakrishnan
Karoly Szuhai
Elke Maas
Lieve Umans
Vanesa Abon Escalona
Daniela Salvatori
Dieter Deforce
Wim Van Criekinge
Danny Huylebroeck
Christine Mummery
An Zwijsen
Susana M. Chuva de Sousa Lopes
BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
Stem Cell Reports
title BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
title_full BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
title_fullStr BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
title_full_unstemmed BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
title_short BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells
title_sort bmp smad signaling regulates lineage priming but is dispensable for self renewal in mouse embryonic stem cells
url http://www.sciencedirect.com/science/article/pii/S2213671115003483
work_keys_str_mv AT mariagomesfernandes bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT rubendries bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT matthiassroost bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT stefansemrau bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT anademelobernardo bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT richardpdavis bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT ramprasadramakrishnan bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT karolyszuhai bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT elkemaas bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT lieveumans bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT vanesaabonescalona bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT danielasalvatori bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT dieterdeforce bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT wimvancriekinge bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT dannyhuylebroeck bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT christinemummery bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT anzwijsen bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells
AT susanamchuvadesousalopes bmpsmadsignalingregulateslineageprimingbutisdispensableforselfrenewalinmouseembryonicstemcells