Cytotoxic-Ag-Modified Eggshell Membrane Nanocomposites as Bactericides in Concrete Mortar

Against the backdrop of escalating infrastructure budgets worldwide, a notable portion—up to 45%—is allocated to maintenance endeavors rather than innovative infrastructure development. A substantial fraction of this maintenance commitment involves combatting concrete degradation due to microbial at...

Full description

Bibliographic Details
Main Authors: Samuel Tomi Aina, Hilda Dinah Kyomuhimbo, Barend Du Plessis, Vuyo Mjimba, Nils Haneklaus, Hendrik Gideon Brink
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/20/15463
Description
Summary:Against the backdrop of escalating infrastructure budgets worldwide, a notable portion—up to 45%—is allocated to maintenance endeavors rather than innovative infrastructure development. A substantial fraction of this maintenance commitment involves combatting concrete degradation due to microbial attacks. In response, this study endeavors to propose a remedial strategy employing nano metals and repurposed materials within cement mortar. The methodology entails the adsorption onto eggshell membranes (ESM) of silver nitrate (ESM/AgNO<sub>3</sub>) or silver nanoparticles (ESM/AgNPs) yielding silver–eggshell membrane composites. Subsequently, the resulting silver–eggshell membrane composites were introduced in different proportions to replace cement, resulting in the formulation of ten distinct mortar compositions. A thorough analysis encompassing a range of techniques, such as spectrophotometry, scanning electron microscopy, thermogravimetric analysis, X-ray fluorescence analysis, X-ray diffraction (XRD), and MTT assay, was performed on these composite blends. Additionally, evaluations of both compressive and tensile strengths were carried out. The mortar blends 3, 5, and 6, characterized by 2% ESM/AgNO<sub>3</sub>, 1% ESM/AgNPs, and 2% ESM/AgNPs cement replacement, respectively, exhibited remarkable antimicrobial efficacy, manifesting in substantial reduction in microbial cell viability (up to 50%) of typical waste activated sludge. Concurrently, a marginal reduction of approximately 10% in compressive strength was noted, juxtaposed with an insignificant change in tensile strength. This investigation sheds light on a promising avenue for addressing concrete deterioration while navigating the balance between material performance and structural integrity.
ISSN:1661-6596
1422-0067