On the Computational Modeling of Inclined Brine Discharges

In this paper, five computational approaches are used to model bulk flow parameters of inclined round negatively buoyant jets. More specifically, an integral model employing Gaussian distributions for velocity and apparent acceleration of gravity, proposed in earlier study, is implemented with two d...

Full description

Bibliographic Details
Main Authors: Ilias G. Papakonstantis, Panos N. Papanicolaou
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/7/2/86
Description
Summary:In this paper, five computational approaches are used to model bulk flow parameters of inclined round negatively buoyant jets. More specifically, an integral model employing Gaussian distributions for velocity and apparent acceleration of gravity, proposed in earlier study, is implemented with two different entrainment formulae. The remaining three computational approaches include an integral model known as EMA, which takes into consideration the fluid detachment occurring in the inner side of the flow near the terminal height, the widely known commercial model Corjet and analytical solutions that were proposed in a previous study. Predictions are provided for the maximum centerline height and its horizontal position, the terminal height of the upper jet boundary, the horizontal distance to the points where the jet centerline and the upper jet boundary return to the source level, the centerline dilution at the maximum height and the centerline dilution at the return point. Detailed comparisons are made in dimensionless form between the estimations provided by the models and a wide range of experimental data for discharge angles between 15° and 90°. Conclusions are drawn regarding the performance of the five computational approaches.
ISSN:2311-5521