Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models

Abstract In models with a U(1) gauge extension beyond the Standard Model, one can derive sum rules for the couplings of the theory that are a consequence of tree-level unitarity. In this paper, we provide a comprehensive list of coupling sum rules for a general SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU...

Full description

Bibliographic Details
Main Authors: Miguel P. Bento, Howard E. Haber, João P. Silva
Format: Article
Language:English
Published: SpringerOpen 2023-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP10(2023)083
_version_ 1797341435789312000
author Miguel P. Bento
Howard E. Haber
João P. Silva
author_facet Miguel P. Bento
Howard E. Haber
João P. Silva
author_sort Miguel P. Bento
collection DOAJ
description Abstract In models with a U(1) gauge extension beyond the Standard Model, one can derive sum rules for the couplings of the theory that are a consequence of tree-level unitarity. In this paper, we provide a comprehensive list of coupling sum rules for a general SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ gauge theory coupled to an arbitrary set of fermion and scalar multiplets. These results are of particular interest for models of dark matter that employ an extended gauge sector mediated by a new (dark) Z ′ gauge boson. For the case of a minimal extension of the Standard Model with a U 1 Y ′ $$ \textrm{U}{(1)}_{Y^{\prime }} $$ gauge boson, we clarify the definitions of the weak mixing angle and the electroweak ρ parameter. We demonstrate the utility of a generalized ρ parameter (denoted by ρ ′ ) whose definition naturally follows from the unitarity sum rules developed in this paper.
first_indexed 2024-03-08T10:18:00Z
format Article
id doaj.art-b29f6742caa3456bb4a24cbabebc51f3
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-03-08T10:18:00Z
publishDate 2023-10-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-b29f6742caa3456bb4a24cbabebc51f32024-01-28T12:15:18ZengSpringerOpenJournal of High Energy Physics1029-84792023-10-0120231012910.1007/JHEP10(2023)083Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ ModelsMiguel P. Bento0Howard E. Haber1João P. Silva2CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de LisboaSanta Cruz Institute for Particle Physics, University of CaliforniaCFTP, Departamento de Física, Instituto Superior Técnico, Universidade de LisboaAbstract In models with a U(1) gauge extension beyond the Standard Model, one can derive sum rules for the couplings of the theory that are a consequence of tree-level unitarity. In this paper, we provide a comprehensive list of coupling sum rules for a general SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ gauge theory coupled to an arbitrary set of fermion and scalar multiplets. These results are of particular interest for models of dark matter that employ an extended gauge sector mediated by a new (dark) Z ′ gauge boson. For the case of a minimal extension of the Standard Model with a U 1 Y ′ $$ \textrm{U}{(1)}_{Y^{\prime }} $$ gauge boson, we clarify the definitions of the weak mixing angle and the electroweak ρ parameter. We demonstrate the utility of a generalized ρ parameter (denoted by ρ ′ ) whose definition naturally follows from the unitarity sum rules developed in this paper.https://doi.org/10.1007/JHEP10(2023)083Electroweak Precision PhysicsNew Gauge InteractionsGauge Symmetry
spellingShingle Miguel P. Bento
Howard E. Haber
João P. Silva
Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
Journal of High Energy Physics
Electroweak Precision Physics
New Gauge Interactions
Gauge Symmetry
title Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
title_full Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
title_fullStr Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
title_full_unstemmed Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
title_short Tree-level Unitarity in SU 2 L × U 1 Y × U 1 Y ′ $$ \textrm{SU}{(2)}_L\times \textrm{U}{(1)}_Y\times \textrm{U}{(1)}_{Y^{\prime }} $$ Models
title_sort tree level unitarity in su 2 l u 1 y u 1 y textrm su 2 l times textrm u 1 y times textrm u 1 y prime models
topic Electroweak Precision Physics
New Gauge Interactions
Gauge Symmetry
url https://doi.org/10.1007/JHEP10(2023)083
work_keys_str_mv AT miguelpbento treelevelunitarityinsu2lu1yu1ytextrmsu2ltimestextrmu1ytimestextrmu1yprimemodels
AT howardehaber treelevelunitarityinsu2lu1yu1ytextrmsu2ltimestextrmu1ytimestextrmu1yprimemodels
AT joaopsilva treelevelunitarityinsu2lu1yu1ytextrmsu2ltimestextrmu1ytimestextrmu1yprimemodels