Summary: | Aerogels emerge as captivating contenders within the realm of high-temperature thermal resistance and thermal insulation. Nevertheless, their practical applications are usually constrained by their inherent brittleness when subjected to rigorous conditions. Herein, employing hafnium dichloride oxide octahydrate (HfOCl<sub>2</sub>·8H<sub>2</sub>O) as the hafnium source and resorcinol–formaldehyde (RF) as the carbon precursor, hafnium carbide (HfC) aerogels are fabricated via the sol-gel method complemented with carbothermal reduction reaction. Investigations are conducted into the effects of various molar ratios, duration, and temperatures of calcination on the microstructural features and physico-chemical characteristics of the as-prepared HfC aerogel. The aerogel shows a high BET-specific surface area (601.02 m<sup>2</sup>/g), which is much larger than those of previously reported aerogels. Furthermore, the HfC aerogel exhibits a low thermal conductivity of 0.053 W/(m·K) and a compressive strength of up to 6.12 MPa after carbothermal reduction at 1500 °C. These excellent thermal insulation and mechanical properties ensure it is ideal for the utilization of high-temperature thermal resistance and thermal insulation in the fields of aerospace.
|