An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations

In the present paper, an iterative algorithm is proposed for solving the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi>&...

Full description

Bibliographic Details
Main Authors: Jing Jiang, Ning Li
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/4/776
_version_ 1797409200239804416
author Jing Jiang
Ning Li
author_facet Jing Jiang
Ning Li
author_sort Jing Jiang
collection DOAJ
description In the present paper, an iterative algorithm is proposed for solving the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group of a system of quaternion matrix equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover></mstyle><mrow><mo stretchy="false">(</mo><msub><mi>A</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><msub><mi>X</mi><mi>l</mi></msub><msub><mi>B</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mover accent="true"><msub><mi>X</mi><mi>l</mi></msub><mo>˜</mo></mover><msub><mi>D</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>F</mi><mi>s</mi></msub><mo>,</mo><mspace width="4.pt"></mspace><mi>s</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>. A generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group, as well as the least Frobenius norm generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group, can be derived by choosing appropriate initial matrices, respectively. Moreover, the optimal approximate generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group to a given matrix group can be derived by computing the least Frobenius norm generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group of a reestablished system of matrix equations. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm.
first_indexed 2024-03-09T04:10:55Z
format Article
id doaj.art-b2ad533bb1714ec094ad966233dd6d2b
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T04:10:55Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-b2ad533bb1714ec094ad966233dd6d2b2023-12-03T14:00:24ZengMDPI AGSymmetry2073-89942022-04-0114477610.3390/sym14040776An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix EquationsJing Jiang0Ning Li1Department of Mathematics, QiLu Normal University, Jinan 250013, ChinaSchool of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan 250002, ChinaIn the present paper, an iterative algorithm is proposed for solving the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group of a system of quaternion matrix equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover></mstyle><mrow><mo stretchy="false">(</mo><msub><mi>A</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><msub><mi>X</mi><mi>l</mi></msub><msub><mi>B</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mover accent="true"><msub><mi>X</mi><mi>l</mi></msub><mo>˜</mo></mover><msub><mi>D</mi><mrow><mi>l</mi><mi>s</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>F</mi><mi>s</mi></msub><mo>,</mo><mspace width="4.pt"></mspace><mi>s</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></semantics></math></inline-formula>. A generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group, as well as the least Frobenius norm generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group, can be derived by choosing appropriate initial matrices, respectively. Moreover, the optimal approximate generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group to a given matrix group can be derived by computing the least Frobenius norm generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-reflexive solution group of a reestablished system of matrix equations. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm.https://www.mdpi.com/2073-8994/14/4/776quaternion matrix equationsiterative algorithmoptimal approximate solution
spellingShingle Jing Jiang
Ning Li
An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
Symmetry
quaternion matrix equations
iterative algorithm
optimal approximate solution
title An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
title_full An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
title_fullStr An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
title_full_unstemmed An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
title_short An Iterative Algorithm for the Generalized Reflexive Solution Group of a System of Quaternion Matrix Equations
title_sort iterative algorithm for the generalized reflexive solution group of a system of quaternion matrix equations
topic quaternion matrix equations
iterative algorithm
optimal approximate solution
url https://www.mdpi.com/2073-8994/14/4/776
work_keys_str_mv AT jingjiang aniterativealgorithmforthegeneralizedreflexivesolutiongroupofasystemofquaternionmatrixequations
AT ningli aniterativealgorithmforthegeneralizedreflexivesolutiongroupofasystemofquaternionmatrixequations
AT jingjiang iterativealgorithmforthegeneralizedreflexivesolutiongroupofasystemofquaternionmatrixequations
AT ningli iterativealgorithmforthegeneralizedreflexivesolutiongroupofasystemofquaternionmatrixequations