Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients
BackgroundDisulfidptosis is a recently discovered form of cell death. However, its biological mechanisms in bladder cancer (BCa) are yet to be understood.MethodsDisulfidptosis-related clusters were identified by consensus clustering. A disulfidptosis-related gene (DRG) prognostic model was establish...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-05-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1198878/full |
_version_ | 1797815120776134656 |
---|---|
author | Hualin Chen Wenjie Yang Yingjie Li Lin Ma Zhigang Ji |
author_facet | Hualin Chen Wenjie Yang Yingjie Li Lin Ma Zhigang Ji |
author_sort | Hualin Chen |
collection | DOAJ |
description | BackgroundDisulfidptosis is a recently discovered form of cell death. However, its biological mechanisms in bladder cancer (BCa) are yet to be understood.MethodsDisulfidptosis-related clusters were identified by consensus clustering. A disulfidptosis-related gene (DRG) prognostic model was established and verified in various datasets. A series of experiments including qRT-PCR, immunoblotting, IHC, CCK-8, EdU, wound-healing, transwell, dual-luciferase reporter, and ChIP assays were used to study the biological functions.ResultsWe identified two DRG clusters, which exhibited distinct clinicopathological features, prognosis, and tumor immune microenvironment (TIME) landscapes. A DRG prognostic model with ten features (DCBLD2, JAM3, CSPG4, SCEL, GOLGA8A, CNTN1, APLP1, PTPRR, POU5F1, CTSE) was established and verified in several external datasets in terms of prognosis and immunotherapy response prediction. BCa patients with high DRG scores may be characterized by declined survival, inflamed TIME, and elevated tumor mutation burden. Besides, the correlation between DRG score and immune checkpoint genes and chemoradiotherapy-related genes indicated the implication of the model in personalized therapy. Furthermore, random survival forest analysis was performed to select the top important features within the model: POU5F1 and CTSE. qRT-PCR, immunoblotting, and immunohistochemistry assays showed the enhanced expression of CTSE in BCa tumor tissues. A series of phenotypic assays revealed the oncogenetic roles of CTSE in BCa cells. Mechanically, POU5F1 can transactivate CTSE, promoting BCa cell proliferation and metastasis.ConclusionsOur study highlighted the disulfidptosis in the regulation of tumor progression, sensitivity to therapy, and survival of BCa patients. POU5F1 and CTSE may be potential therapeutic targets for the clinical treatment of BCa. |
first_indexed | 2024-03-13T08:17:59Z |
format | Article |
id | doaj.art-b2af72b572b4414cb6a5bc7dd32b0a8c |
institution | Directory Open Access Journal |
issn | 1664-3224 |
language | English |
last_indexed | 2024-03-13T08:17:59Z |
publishDate | 2023-05-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Immunology |
spelling | doaj.art-b2af72b572b4414cb6a5bc7dd32b0a8c2023-05-31T13:51:29ZengFrontiers Media S.A.Frontiers in Immunology1664-32242023-05-011410.3389/fimmu.2023.11988781198878Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patientsHualin ChenWenjie YangYingjie LiLin MaZhigang JiBackgroundDisulfidptosis is a recently discovered form of cell death. However, its biological mechanisms in bladder cancer (BCa) are yet to be understood.MethodsDisulfidptosis-related clusters were identified by consensus clustering. A disulfidptosis-related gene (DRG) prognostic model was established and verified in various datasets. A series of experiments including qRT-PCR, immunoblotting, IHC, CCK-8, EdU, wound-healing, transwell, dual-luciferase reporter, and ChIP assays were used to study the biological functions.ResultsWe identified two DRG clusters, which exhibited distinct clinicopathological features, prognosis, and tumor immune microenvironment (TIME) landscapes. A DRG prognostic model with ten features (DCBLD2, JAM3, CSPG4, SCEL, GOLGA8A, CNTN1, APLP1, PTPRR, POU5F1, CTSE) was established and verified in several external datasets in terms of prognosis and immunotherapy response prediction. BCa patients with high DRG scores may be characterized by declined survival, inflamed TIME, and elevated tumor mutation burden. Besides, the correlation between DRG score and immune checkpoint genes and chemoradiotherapy-related genes indicated the implication of the model in personalized therapy. Furthermore, random survival forest analysis was performed to select the top important features within the model: POU5F1 and CTSE. qRT-PCR, immunoblotting, and immunohistochemistry assays showed the enhanced expression of CTSE in BCa tumor tissues. A series of phenotypic assays revealed the oncogenetic roles of CTSE in BCa cells. Mechanically, POU5F1 can transactivate CTSE, promoting BCa cell proliferation and metastasis.ConclusionsOur study highlighted the disulfidptosis in the regulation of tumor progression, sensitivity to therapy, and survival of BCa patients. POU5F1 and CTSE may be potential therapeutic targets for the clinical treatment of BCa.https://www.frontiersin.org/articles/10.3389/fimmu.2023.1198878/fulldisulfidptosisbladder cancermolecular clusterstumor immune microenvironmentprognostic modelPOU5F1 |
spellingShingle | Hualin Chen Wenjie Yang Yingjie Li Lin Ma Zhigang Ji Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients Frontiers in Immunology disulfidptosis bladder cancer molecular clusters tumor immune microenvironment prognostic model POU5F1 |
title | Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients |
title_full | Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients |
title_fullStr | Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients |
title_full_unstemmed | Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients |
title_short | Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients |
title_sort | leveraging a disulfidptosis based signature to improve the survival and drug sensitivity of bladder cancer patients |
topic | disulfidptosis bladder cancer molecular clusters tumor immune microenvironment prognostic model POU5F1 |
url | https://www.frontiersin.org/articles/10.3389/fimmu.2023.1198878/full |
work_keys_str_mv | AT hualinchen leveragingadisulfidptosisbasedsignaturetoimprovethesurvivalanddrugsensitivityofbladdercancerpatients AT wenjieyang leveragingadisulfidptosisbasedsignaturetoimprovethesurvivalanddrugsensitivityofbladdercancerpatients AT yingjieli leveragingadisulfidptosisbasedsignaturetoimprovethesurvivalanddrugsensitivityofbladdercancerpatients AT linma leveragingadisulfidptosisbasedsignaturetoimprovethesurvivalanddrugsensitivityofbladdercancerpatients AT zhigangji leveragingadisulfidptosisbasedsignaturetoimprovethesurvivalanddrugsensitivityofbladdercancerpatients |