Irradiation pretreatment enhances the therapeutic efficacy of platelet-membrane-camouflaged antitumor nanoparticles

Abstract Background Cell membrane-based nanocarriers are promising candidates for delivering antitumor agents. The employment of a simple and feasible method to improve the tumor-targeting abilities of these systems is appealing for further application. Herein, we prepared a platelet membrane (PM)-c...

Full description

Bibliographic Details
Main Authors: Yin Chen, Xue Shen, Songling Han, Tao Wang, Jianqi Zhao, Yongwu He, Shilei Chen, Shengqi Deng, Cheng Wang, Junping Wang
Format: Article
Language:English
Published: BMC 2020-07-01
Series:Journal of Nanobiotechnology
Online Access:http://link.springer.com/article/10.1186/s12951-020-00660-z
Description
Summary:Abstract Background Cell membrane-based nanocarriers are promising candidates for delivering antitumor agents. The employment of a simple and feasible method to improve the tumor-targeting abilities of these systems is appealing for further application. Herein, we prepared a platelet membrane (PM)-camouflaged antitumor nanoparticle. The effects of irradiation pretreatment on tumor targeting of the nanomaterial and on its antitumor action were evaluated. Results The biomimetic nanomaterial constructed by indocyanine green, poly(d,l-lactide-co-glycolide), and PM is termed PINPs@PM. A 4-Gy X-ray irradiation increased the proportions of G2/M phase and Caveolin-1 content in 4T1 breast cancer cells, contributing to an endocytic enhancement of PINPs@PM. PINPs@PM produced hyperthermia and reactive oxygen species upon excitation by near-infrared irradiation, which were detrimental to the cytoplasmic lysosome and resulted in cell death. Irradiation pretreatment thus strengthened the antitumor activity of PINPs@PM in vitro. Mice experiments revealed that irradiation enhanced the tumor targeting capability of PINPs@PM in vivo. When the same dose of PINPs@PM was intravenously administered, irradiated mice had a better outcome than did mice without X-ray pretreatment. Conclusion The study demonstrates an effective strategy combining irradiation pretreatment and PM camouflage to deliver antitumor nanoparticles, which may be instrumental for targeted tumor therapy.
ISSN:1477-3155