Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity

Abstract Background Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood–brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, t...

Full description

Bibliographic Details
Main Authors: Julia Castillo-González, José Luis Ruiz, Ignacio Serrano-Martínez, Irene Forte-Lago, Ana Ubago-Rodriguez, Marta Caro, Jesús Miguel Pérez-Gómez, Alejandro Benítez-Troncoso, Eduardo Andrés-León, Macarena Sánchez-Navarro, Raúl M. Luque, Elena González-Rey
Format: Article
Language:English
Published: BMC 2023-10-01
Series:Journal of Neuroinflammation
Subjects:
Online Access:https://doi.org/10.1186/s12974-023-02908-5
_version_ 1797557644890734592
author Julia Castillo-González
José Luis Ruiz
Ignacio Serrano-Martínez
Irene Forte-Lago
Ana Ubago-Rodriguez
Marta Caro
Jesús Miguel Pérez-Gómez
Alejandro Benítez-Troncoso
Eduardo Andrés-León
Macarena Sánchez-Navarro
Raúl M. Luque
Elena González-Rey
author_facet Julia Castillo-González
José Luis Ruiz
Ignacio Serrano-Martínez
Irene Forte-Lago
Ana Ubago-Rodriguez
Marta Caro
Jesús Miguel Pérez-Gómez
Alejandro Benítez-Troncoso
Eduardo Andrés-León
Macarena Sánchez-Navarro
Raúl M. Luque
Elena González-Rey
author_sort Julia Castillo-González
collection DOAJ
description Abstract Background Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood–brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. Methods Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. Results The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. Conclusions The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
first_indexed 2024-03-10T17:19:32Z
format Article
id doaj.art-b2caf9906f144b4b854abd568b8551c1
institution Directory Open Access Journal
issn 1742-2094
language English
last_indexed 2024-03-10T17:19:32Z
publishDate 2023-10-01
publisher BMC
record_format Article
series Journal of Neuroinflammation
spelling doaj.art-b2caf9906f144b4b854abd568b8551c12023-11-20T10:24:08ZengBMCJournal of Neuroinflammation1742-20942023-10-0120112510.1186/s12974-023-02908-5Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrityJulia Castillo-González0José Luis Ruiz1Ignacio Serrano-Martínez2Irene Forte-Lago3Ana Ubago-Rodriguez4Marta Caro5Jesús Miguel Pérez-Gómez6Alejandro Benítez-Troncoso7Eduardo Andrés-León8Macarena Sánchez-Navarro9Raúl M. Luque10Elena González-Rey11Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICMaimonides Biomedical Research Institute of Cordoba (IMIBIC)Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICInstitute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICMaimonides Biomedical Research Institute of Cordoba (IMIBIC)Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSICAbstract Background Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood–brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. Methods Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. Results The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. Conclusions The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.https://doi.org/10.1186/s12974-023-02908-5Blood–brain barrierCortistatinTight-junctionsBrain endothelium transcriptomeOxygen–glucose deprivationIschemia
spellingShingle Julia Castillo-González
José Luis Ruiz
Ignacio Serrano-Martínez
Irene Forte-Lago
Ana Ubago-Rodriguez
Marta Caro
Jesús Miguel Pérez-Gómez
Alejandro Benítez-Troncoso
Eduardo Andrés-León
Macarena Sánchez-Navarro
Raúl M. Luque
Elena González-Rey
Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
Journal of Neuroinflammation
Blood–brain barrier
Cortistatin
Tight-junctions
Brain endothelium transcriptome
Oxygen–glucose deprivation
Ischemia
title Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
title_full Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
title_fullStr Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
title_full_unstemmed Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
title_short Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity
title_sort cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways exacerbated immune activation and disrupted barrier integrity
topic Blood–brain barrier
Cortistatin
Tight-junctions
Brain endothelium transcriptome
Oxygen–glucose deprivation
Ischemia
url https://doi.org/10.1186/s12974-023-02908-5
work_keys_str_mv AT juliacastillogonzalez cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT joseluisruiz cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT ignacioserranomartinez cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT irenefortelago cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT anaubagorodriguez cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT martacaro cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT jesusmiguelperezgomez cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT alejandrobeniteztroncoso cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT eduardoandresleon cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT macarenasancheznavarro cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT raulmluque cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity
AT elenagonzalezrey cortistatindeficiencyrevealsadysfunctionalbrainendotheliumwithimpairedgenepathwaysexacerbatedimmuneactivationanddisruptedbarrierintegrity