An Efficient Protein Evolution Workflow for the Improvement of Bacterial PET Hydrolyzing Enzymes

Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a s...

Full description

Bibliographic Details
Main Authors: Valentina Pirillo, Marco Orlando, Davide Tessaro, Loredano Pollegioni, Gianluca Molla
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/1/264
Description
Summary:Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a straightforward workflow employing semi-rational protein engineering combined to a high-throughput screening of variant libraries for their activity on PET nanoparticles. Using this approach, starting from the double variant W159H/S238F of <i>Ideonella sakaiensis</i> 201-F6 PETase, the W159H/F238A-ΔIsPET variant, possessing a higher hydrolytic activity on PET, was identified. This variant was stabilized by introducing two additional known substitutions (S121E and D186H) generating the TS-ΔIsPET variant. By using 0.1 mg mL<sup>−1</sup> of TS-ΔIsPET, ~10.6 mM of degradation products were produced in 2 days from 9 mg mL<sup>−1</sup> PET microparticles (~26% depolymerization yield). Indeed, TS-ΔIsPET allowed a massive degradation of PET nanoparticles (>80% depolymerization yield) in 1.5 h using only 20 μg of enzyme mL<sup>−1</sup>. The rationale underlying the effect on the catalytic parameters due to the F238A substitution was studied by enzymatic investigation and molecular dynamics/docking analysis. The present workflow is a well-suited protocol for the evolution of PHEs to help generate an efficient enzymatic toolbox for polyester degradation.
ISSN:1661-6596
1422-0067