Detecting SARS-CoV-2 Orf3a and E ion channel activity in COVID-19 blood samples

Abstract Background: SARS-CoV-2 has been found in the heart of COVID-19 patients. It is unclear how the virus passes from the upper respiratory tract to the myocardium. We hypothesized that SARS-CoV-2 is present in the blood of COVID-19 infected patients, spreading to other organs such as heart....

Full description

Bibliographic Details
Main Authors: Han-Gang Yu, Gina Sizemore, Katy Smoot, Peter Perrotta
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Journal of Clinical and Translational Science
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2059866121008566/type/journal_article
Description
Summary:Abstract Background: SARS-CoV-2 has been found in the heart of COVID-19 patients. It is unclear how the virus passes from the upper respiratory tract to the myocardium. We hypothesized that SARS-CoV-2 is present in the blood of COVID-19 infected patients, spreading to other organs such as heart. Methods: We targeted two viroporins, Orf3a and E, in SARS-CoV-2. Orf3a and E form non-voltage-gated ion channels. A combined fluorescence potassium ion assay with three channel modulators (4-aminopyridine, emodin-Orf3a channel blocker, and gliclazide-E channel blocker) was developed to detect SARS-CoV-2 Orf3a/E channel activity. In blood samples, we subtracted the fluorescence signals in the absence and presence of emodin/gliclazide to detect Orf3a and E channel activity. Results: In lentivirus-spiked samples, we detected significant channel activity of Orf3a/E based on increase in fluorescence induced by 4-aminopyridine, and this increase in fluorescence was inhibited by emodin and gliclazide. In 18 antigen/PCR-positive samples, our test results found 15 are positive, demonstrating 83.3% concordance. In 24 antigen/PCR-negative samples, our test results found 21 are negative, showing 87.5% concordance. Conclusions: We developed a cell-free test that can detect Orf3a/E channel activity of SARS-CoV-2 in blood samples from COVID-19-infected individuals, confirming a hypothesis that the virus spreads to the heart via blood circulation.
ISSN:2059-8661