Scoring Antarctic surface mass balance in climate models to refine future projections
<p>An increase in Antarctic Ice Sheet (AIS) surface mass balance (SMB) has the potential to mitigate future sea level rise that is driven by enhanced solid ice discharge from the ice sheet. For climate models, AIS SMB provides a difficult challenge, as it is highly susceptible to spatial, seas...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-12-01
|
Series: | The Cryosphere |
Online Access: | https://tc.copernicus.org/articles/14/4719/2020/tc-14-4719-2020.pdf |
_version_ | 1818644243724369920 |
---|---|
author | T. Gorte J. T. M. Lenaerts B. Medley |
author_facet | T. Gorte J. T. M. Lenaerts B. Medley |
author_sort | T. Gorte |
collection | DOAJ |
description | <p>An increase in Antarctic Ice Sheet (AIS) surface mass balance (SMB) has the potential to mitigate future sea level rise that is driven by enhanced solid ice discharge from the ice sheet. For climate models, AIS SMB provides a difficult challenge, as it is highly susceptible to spatial, seasonal, and interannual variability.</p>
<p>Here we use a reconstructed data set of AIS snow accumulation as “true” observational data, to evaluate the ability of the CMIP5 and CMIP6 suites of models in capturing the mean, trends, temporal variability, and spatial variability in SMB over the historical period (1850–2000). This gives insight into which models are most reliable for predicting SMB into the future. We found that the best scoring models included the National Aeronautics and Space Administration (NASA) GISS model and the Max Planck Institute (MPI) for Meteorology's model for CMIP5, as well as one of the Community Earth System Model v2 (CESM2) models and one MPI model for CMIP6.</p>
<p>Using a scoring system based on SMB mean value, trend, and temporal variability across the AIS, as well as spatial SMB variability, we selected a subset of the top 10th percentile of models to refine 21st century (2000–2100) AIS-integrated SMB projections to 2274 <span class="inline-formula">±</span> 282 Gt yr<span class="inline-formula"><sup>−1</sup></span>, 2358 <span class="inline-formula">±</span> 286 Gt yr<span class="inline-formula"><sup>−1</sup></span>, and 2495 <span class="inline-formula">±</span> 291 Gt yr<span class="inline-formula"><sup>−1</sup></span> for Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, respectively. We also reduced the spread in AIS-integrated mean SMB by 79 %, 79 %, and 74 % in RCPs 2.6, 4.5, and 8.5, respectively.</p>
<p>Notably, we find that there is no improvement from CMIP5 to CMIP6 in overall score. In fact, CMIP6 performed slightly worse on average compared to CMIP5 at capturing the aforementioned SMB criteria. Our results also indicate that model performance scoring is affected by internal climate variability (particularly the spatial variability), which is illustrated by the fact that the range in overall score between ensemble members within the CESM1 Large Ensemble is comparable to the range in overall score between CESM1 model simulations within the CMIP5 model suite. We also find that a higher horizontal resolution does not yield to a conclusive improvement in score.</p> |
first_indexed | 2024-12-17T00:11:45Z |
format | Article |
id | doaj.art-b2e2dc4e24f64ad48e0ab5e2d18b4717 |
institution | Directory Open Access Journal |
issn | 1994-0416 1994-0424 |
language | English |
last_indexed | 2024-12-17T00:11:45Z |
publishDate | 2020-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The Cryosphere |
spelling | doaj.art-b2e2dc4e24f64ad48e0ab5e2d18b47172022-12-21T22:10:49ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-12-01144719473310.5194/tc-14-4719-2020Scoring Antarctic surface mass balance in climate models to refine future projectionsT. Gorte0J. T. M. Lenaerts1B. Medley2Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USACryospheric Sciences Laboratory, National Aeronautics and Space Administration's Goddard Space Flight Center, Greenbelt, Maryland, USA<p>An increase in Antarctic Ice Sheet (AIS) surface mass balance (SMB) has the potential to mitigate future sea level rise that is driven by enhanced solid ice discharge from the ice sheet. For climate models, AIS SMB provides a difficult challenge, as it is highly susceptible to spatial, seasonal, and interannual variability.</p> <p>Here we use a reconstructed data set of AIS snow accumulation as “true” observational data, to evaluate the ability of the CMIP5 and CMIP6 suites of models in capturing the mean, trends, temporal variability, and spatial variability in SMB over the historical period (1850–2000). This gives insight into which models are most reliable for predicting SMB into the future. We found that the best scoring models included the National Aeronautics and Space Administration (NASA) GISS model and the Max Planck Institute (MPI) for Meteorology's model for CMIP5, as well as one of the Community Earth System Model v2 (CESM2) models and one MPI model for CMIP6.</p> <p>Using a scoring system based on SMB mean value, trend, and temporal variability across the AIS, as well as spatial SMB variability, we selected a subset of the top 10th percentile of models to refine 21st century (2000–2100) AIS-integrated SMB projections to 2274 <span class="inline-formula">±</span> 282 Gt yr<span class="inline-formula"><sup>−1</sup></span>, 2358 <span class="inline-formula">±</span> 286 Gt yr<span class="inline-formula"><sup>−1</sup></span>, and 2495 <span class="inline-formula">±</span> 291 Gt yr<span class="inline-formula"><sup>−1</sup></span> for Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, respectively. We also reduced the spread in AIS-integrated mean SMB by 79 %, 79 %, and 74 % in RCPs 2.6, 4.5, and 8.5, respectively.</p> <p>Notably, we find that there is no improvement from CMIP5 to CMIP6 in overall score. In fact, CMIP6 performed slightly worse on average compared to CMIP5 at capturing the aforementioned SMB criteria. Our results also indicate that model performance scoring is affected by internal climate variability (particularly the spatial variability), which is illustrated by the fact that the range in overall score between ensemble members within the CESM1 Large Ensemble is comparable to the range in overall score between CESM1 model simulations within the CMIP5 model suite. We also find that a higher horizontal resolution does not yield to a conclusive improvement in score.</p>https://tc.copernicus.org/articles/14/4719/2020/tc-14-4719-2020.pdf |
spellingShingle | T. Gorte J. T. M. Lenaerts B. Medley Scoring Antarctic surface mass balance in climate models to refine future projections The Cryosphere |
title | Scoring Antarctic surface mass balance in climate models to refine future projections |
title_full | Scoring Antarctic surface mass balance in climate models to refine future projections |
title_fullStr | Scoring Antarctic surface mass balance in climate models to refine future projections |
title_full_unstemmed | Scoring Antarctic surface mass balance in climate models to refine future projections |
title_short | Scoring Antarctic surface mass balance in climate models to refine future projections |
title_sort | scoring antarctic surface mass balance in climate models to refine future projections |
url | https://tc.copernicus.org/articles/14/4719/2020/tc-14-4719-2020.pdf |
work_keys_str_mv | AT tgorte scoringantarcticsurfacemassbalanceinclimatemodelstorefinefutureprojections AT jtmlenaerts scoringantarcticsurfacemassbalanceinclimatemodelstorefinefutureprojections AT bmedley scoringantarcticsurfacemassbalanceinclimatemodelstorefinefutureprojections |