Effect of expanding farmlands with domestication of animals in the vicinity of disturbed swamps and built-up farmland ponds on population dispersion and decline of locally adapted Mansonia vectors (Diptera: Culicidae)
Background and Objectives: The adaptive processes and resilience of Mansonia vectors responsible for bioindicators can change in response to climate, land use, and environmental changes. This study evaluated the effects of expanding farmlands with the domestication of animals in the vicinity of eith...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Veterinary World
2024-03-01
|
Series: | Veterinary World |
Subjects: | |
Online Access: | https://www.veterinaryworld.org/Vol.17/March-2024/8.pdf |
Summary: | Background and Objectives: The adaptive processes and resilience of Mansonia vectors responsible for bioindicators can change in response to climate, land use, and environmental changes. This study evaluated the effects of expanding farmlands with the domestication of animals in the vicinity of either disturbed swamps or built-up farmland ponds on the population dispersion and decline of locally adapted Mansonia faunas as a result of expanding farmlands in Thailand.
Materials and Methods: Based on environmental surveys, four different geographically defined study sites were selected: I - the expanding farmlands with domestication of livestock and pet animals in the vicinity of low-lying swamp with habitat fragmentation and aquatic vegetation; II - the expanding farmlands with domestication of pet animals in the vicinity of elevated swamp with habitat destruction and aquatic vegetation; III - the expanding farmlands with domestication of livestock and pet animals in the vicinity of low-lying farmland ponds with restoration and aquatic vegetation; and IV - the expanding farmlands with domestication of pet animals in the vicinity of elevated farmland ponds with restoration and aquatic vegetation. Human landing catch collection method was used to periodically assess the species composition and abundance of Mansonia vectors.
Results: Aggregated distributions and seasonal abundances of Mansonia faunas (Mansonia uniformis, Mansonia indiana, Mansonia annulifera, Mansonia annulata, Mansonia bonneae, and Mansonia dives) with variable proportions were observed at all the study sites. A decline in the population of Mansonia faunas, except for Ma. uniformis, was observed at study sites I and II.
Conclusion: The anticipated effects of expanding farmlands affected the population dispersion and decline of locally adapted Mansonia faunas, thus representing a diverse assemblage of Mansonia species with different adaptations, ecological tolerances, and host exploitation strategies in life. These effects depended either on the function of disturbed swamps or on the development of farmland ponds, whether they provided a wide range of freshwater habitats, or on the domestication of animals, whether they provided animal blood meal sources. |
---|---|
ISSN: | 0972-8988 2231-0916 |