Summary: | The effect of coastal upwelling on the recruitment and connectivity of coastal marine populations has rarely been characterized to a level of detail to be included into sound fishery management strategies. The gooseneck barnacle (Pollicipes pollicipes) fishery at the Cantabrian Coast (Northern Spain) is located at the fringes of the NW Spanish Upwelling system. This fishery is being co-managed through a fine-scale, interspersed set of protected rocks where each rock receives a distinct level of protection. Such interspersion is potentially beneficial, but the extent to which such spacing is consistent with mean larval dispersal distances is as yet unknown. We have simulated the spread of gooseneck barnacle larvae in the Central Cantabrian Coast using a high-resolution time-series of current profiles measured at a nearshore location. During a year of high upwelling activity (2009), theoretical recruitment success was 94% with peak recruitment predicted 56 km west of the emission point. However, for a year of low upwelling activity (2011) theoretical recruitment success dropped to 15.4% and peak recruitment was expected 13 km east of the emission point. This is consistent with a positive correlation between catch rates and the Integrated Upwelling Index, using a 4-year lag to allow recruits to reach commercial size. Furthermore, a net long-term westward larval transport was estimated by means of mitochondrial cytochrome c oxidase subunit I (COI) sequences for five populations in the Cantabrian Sea. Our results call into question the role of long distance dispersal, driven by the mesoscale processes in the area, in gooseneck barnacle populations and point to the prevalent role of small-scale, asymmetric connectivity more consistent with the typical scale of the co-management process in this fishery.
|