Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy

Abstract Control of magnetization reversal processes is a key issue for the implementation of magnetic materials in technological applications. The modulation of shape magnetic anisotropy in nanowire structures with a high aspect ratio is an efficient way to tune sharp in‐plane magnetic switching. H...

Full description

Bibliographic Details
Main Authors: Aleix Barrera, Emile Fourneau, Sergi Martín, Josep Maria Batllori, Jordi Alcalá, Lluís Balcells, Narcís Mestres, Ngoc Duy Nguyen, Alvaro Sanchez, Alejandro V. Silhanek, Anna Palau
Format: Article
Language:English
Published: Wiley-VCH 2023-02-01
Series:Advanced Sensor Research
Subjects:
Online Access:https://doi.org/10.1002/adsr.202200042
_version_ 1797775057028644864
author Aleix Barrera
Emile Fourneau
Sergi Martín
Josep Maria Batllori
Jordi Alcalá
Lluís Balcells
Narcís Mestres
Ngoc Duy Nguyen
Alvaro Sanchez
Alejandro V. Silhanek
Anna Palau
author_facet Aleix Barrera
Emile Fourneau
Sergi Martín
Josep Maria Batllori
Jordi Alcalá
Lluís Balcells
Narcís Mestres
Ngoc Duy Nguyen
Alvaro Sanchez
Alejandro V. Silhanek
Anna Palau
author_sort Aleix Barrera
collection DOAJ
description Abstract Control of magnetization reversal processes is a key issue for the implementation of magnetic materials in technological applications. The modulation of shape magnetic anisotropy in nanowire structures with a high aspect ratio is an efficient way to tune sharp in‐plane magnetic switching. However, control of fast magnetization reversal processes induced by perpendicular magnetic fields is much more challenging. Here, tunable sharp magnetoresistance changes, triggered by out‐of‐plane  magnetic fields, are demonstrated in thin permalloy strips grown on LaAlO3 single crystal substrates. Micromagnetic simulations are used to evaluate the resistance changes of the strips at different applied field values and directions and correlate them with the magnetic domain distribution. The experimentally observed sharp magnetic switching, tailored by the shape anisotropy of the strips, is properly accounted for by numerical simulations when considering a substrate‐induced uniaxial magnetic anisotropy. These results are promising for the design of magnetic sensors and other advanced magnetoresistive devices working with perpendicular magnetic fields by using simple structures.
first_indexed 2024-03-12T22:29:51Z
format Article
id doaj.art-b301aee926794a41ab9a57a0e74d8378
institution Directory Open Access Journal
issn 2751-1219
language English
last_indexed 2024-03-12T22:29:51Z
publishDate 2023-02-01
publisher Wiley-VCH
record_format Article
series Advanced Sensor Research
spelling doaj.art-b301aee926794a41ab9a57a0e74d83782023-07-21T15:30:39ZengWiley-VCHAdvanced Sensor Research2751-12192023-02-0122n/an/a10.1002/adsr.202200042Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic AnisotropyAleix Barrera0Emile Fourneau1Sergi Martín2Josep Maria Batllori3Jordi Alcalá4Lluís Balcells5Narcís Mestres6Ngoc Duy Nguyen7Alvaro Sanchez8Alejandro V. Silhanek9Anna Palau10Insitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainSolid‐State Physics ‐ Interfaces and Nanostructures Q‐MAT CESAM Université de Liége B‐4000 Sart Tilman BelgiumInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainSolid‐State Physics ‐ Interfaces and Nanostructures Q‐MAT CESAM Université de Liége B‐4000 Sart Tilman BelgiumDepartament de Fisica Universitat Autonoma de Barcelona Bellaterra Barcelona 08193 Catalonia SpainSolid‐State Physics ‐ Interfaces and Nanostructures Q‐MAT CESAM Université de Liége B‐4000 Sart Tilman BelgiumInsitut de Ciencia de Materials de Barcelona CSIC Campus de la UAB Bellaterra 08193 Catalonia SpainAbstract Control of magnetization reversal processes is a key issue for the implementation of magnetic materials in technological applications. The modulation of shape magnetic anisotropy in nanowire structures with a high aspect ratio is an efficient way to tune sharp in‐plane magnetic switching. However, control of fast magnetization reversal processes induced by perpendicular magnetic fields is much more challenging. Here, tunable sharp magnetoresistance changes, triggered by out‐of‐plane  magnetic fields, are demonstrated in thin permalloy strips grown on LaAlO3 single crystal substrates. Micromagnetic simulations are used to evaluate the resistance changes of the strips at different applied field values and directions and correlate them with the magnetic domain distribution. The experimentally observed sharp magnetic switching, tailored by the shape anisotropy of the strips, is properly accounted for by numerical simulations when considering a substrate‐induced uniaxial magnetic anisotropy. These results are promising for the design of magnetic sensors and other advanced magnetoresistive devices working with perpendicular magnetic fields by using simple structures.https://doi.org/10.1002/adsr.202200042magnetic materialsmagnetic sensorsmagnetoresistancespintronicsthin films
spellingShingle Aleix Barrera
Emile Fourneau
Sergi Martín
Josep Maria Batllori
Jordi Alcalá
Lluís Balcells
Narcís Mestres
Ngoc Duy Nguyen
Alvaro Sanchez
Alejandro V. Silhanek
Anna Palau
Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
Advanced Sensor Research
magnetic materials
magnetic sensors
magnetoresistance
spintronics
thin films
title Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
title_full Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
title_fullStr Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
title_full_unstemmed Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
title_short Tunable Perpendicular Magnetoresistive Sensor Driven by Shape and Substrate Induced Magnetic Anisotropy
title_sort tunable perpendicular magnetoresistive sensor driven by shape and substrate induced magnetic anisotropy
topic magnetic materials
magnetic sensors
magnetoresistance
spintronics
thin films
url https://doi.org/10.1002/adsr.202200042
work_keys_str_mv AT aleixbarrera tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT emilefourneau tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT sergimartin tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT josepmariabatllori tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT jordialcala tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT lluisbalcells tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT narcismestres tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT ngocduynguyen tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT alvarosanchez tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT alejandrovsilhanek tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy
AT annapalau tunableperpendicularmagnetoresistivesensordrivenbyshapeandsubstrateinducedmagneticanisotropy