Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsor...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/19/2627 |
_version_ | 1797575472572268544 |
---|---|
author | Qingdong He Jie Qi Xiangyu Liu Huan Zhang Yiwen Wang Wenbo Wang Fang Guo |
author_facet | Qingdong He Jie Qi Xiangyu Liu Huan Zhang Yiwen Wang Wenbo Wang Fang Guo |
author_sort | Qingdong He |
collection | DOAJ |
description | The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater. |
first_indexed | 2024-03-10T21:39:00Z |
format | Article |
id | doaj.art-b30b0f70ecd848efb41f328e3ce5e7ff |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T21:39:00Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-b30b0f70ecd848efb41f328e3ce5e7ff2023-11-19T14:48:36ZengMDPI AGNanomaterials2079-49912023-09-011319262710.3390/nano13192627Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from WaterQingdong He0Jie Qi1Xiangyu Liu2Huan Zhang3Yiwen Wang4Wenbo Wang5Fang Guo6College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, ChinaThe complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater.https://www.mdpi.com/2079-4991/13/19/2627rectoriteadsorbentrecyclingadsorptionwastewater |
spellingShingle | Qingdong He Jie Qi Xiangyu Liu Huan Zhang Yiwen Wang Wenbo Wang Fang Guo Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water Nanomaterials rectorite adsorbent recycling adsorption wastewater |
title | Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water |
title_full | Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water |
title_fullStr | Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water |
title_full_unstemmed | Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water |
title_short | Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water |
title_sort | carbon in silicate nanohybrid constructed by in situ confined conversion of organics in rectorite for complete removal of dye from water |
topic | rectorite adsorbent recycling adsorption wastewater |
url | https://www.mdpi.com/2079-4991/13/19/2627 |
work_keys_str_mv | AT qingdonghe carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT jieqi carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT xiangyuliu carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT huanzhang carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT yiwenwang carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT wenbowang carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater AT fangguo carboninsilicatenanohybridconstructedbyinsituconfinedconversionoforganicsinrectoriteforcompleteremovalofdyefromwater |