Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications

The aim of this paper is to introduce generalized condition (B) in a quasi-partial metric space acknowledging the notion of Künzi et al. [Künzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics, Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., Erhan M.,Öz...

Full description

Bibliographic Details
Main Authors: Tomar Anita, Beloul Said, Sharma Ritu, Upadhyay Shivangi
Format: Article
Language:English
Published: De Gruyter 2017-11-01
Series:Demonstratio Mathematica
Subjects:
Online Access:http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0028/dema-2017-0028.xml?format=INT
_version_ 1828787670341386240
author Tomar Anita
Beloul Said
Sharma Ritu
Upadhyay Shivangi
author_facet Tomar Anita
Beloul Said
Sharma Ritu
Upadhyay Shivangi
author_sort Tomar Anita
collection DOAJ
description The aim of this paper is to introduce generalized condition (B) in a quasi-partial metric space acknowledging the notion of Künzi et al. [Künzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics, Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., Erhan M.,Öztürk A., Fixed point theorems on quasi-partial metric spaces, Math. Comput.Modelling, 2013, 57, 2442-2448] and to establish coincidence and common fixed point theorems for twoweakly compatible pairs of self mappings. In the sequelwe also answer affirmatively two open problems posed by Abbas, Babu and Alemayehu [Abbas M., Babu G. V. R., Alemayehu G. N., On common fixed points of weakly compatible mappings satisfying generalized condition (B), Filomat, 2011, 25(2), 9-19]. Further in the setting of a quasi-partial metric space, the results obtained are utilized to establish the existence and uniqueness of a solution of the integral equation and the functional equation arising in dynamic programming. Our results are also justified by explanatory examples supported with pictographic validations to demonstrate the authenticity of the postulates.
first_indexed 2024-12-12T00:36:43Z
format Article
id doaj.art-b30b7c83228f4893a769a46f8ce81f8d
institution Directory Open Access Journal
issn 2391-4661
language English
last_indexed 2024-12-12T00:36:43Z
publishDate 2017-11-01
publisher De Gruyter
record_format Article
series Demonstratio Mathematica
spelling doaj.art-b30b7c83228f4893a769a46f8ce81f8d2022-12-22T00:44:21ZengDe GruyterDemonstratio Mathematica2391-46612017-11-0150127829810.1515/dema-2017-0028dema-2017-0028Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applicationsTomar Anita0Beloul Said1Sharma Ritu2Upadhyay Shivangi3Department of Mathematics, V. S. K. C. Government P. G. College, Dakpathar(Uttarakhand), IndiaDepartment of Mathematics, University of El-Oued, P. O. Box 789, El-Oued 39000, AlgeriaDepartment of Mathematics, V. S. K. C. Government P. G. College, Dakpathar (Uttarakhand), IndiaDepartment of Mathematics, V. S. K. C. Government P. G. College, Dakpathar (Uttarakhand), IndiaThe aim of this paper is to introduce generalized condition (B) in a quasi-partial metric space acknowledging the notion of Künzi et al. [Künzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics, Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., Erhan M.,Öztürk A., Fixed point theorems on quasi-partial metric spaces, Math. Comput.Modelling, 2013, 57, 2442-2448] and to establish coincidence and common fixed point theorems for twoweakly compatible pairs of self mappings. In the sequelwe also answer affirmatively two open problems posed by Abbas, Babu and Alemayehu [Abbas M., Babu G. V. R., Alemayehu G. N., On common fixed points of weakly compatible mappings satisfying generalized condition (B), Filomat, 2011, 25(2), 9-19]. Further in the setting of a quasi-partial metric space, the results obtained are utilized to establish the existence and uniqueness of a solution of the integral equation and the functional equation arising in dynamic programming. Our results are also justified by explanatory examples supported with pictographic validations to demonstrate the authenticity of the postulates.http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0028/dema-2017-0028.xml?format=INTCommon fixed pointweakly compatiblegeneralized condition (B)partial-metric spacequasipartial metric space47H1054H25
spellingShingle Tomar Anita
Beloul Said
Sharma Ritu
Upadhyay Shivangi
Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
Demonstratio Mathematica
Common fixed point
weakly compatible
generalized condition (B)
partial-metric space
quasipartial metric space
47H10
54H25
title Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
title_full Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
title_fullStr Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
title_full_unstemmed Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
title_short Common fixed point theorems via generalized condition (B) in quasi-partial metric space and applications
title_sort common fixed point theorems via generalized condition b in quasi partial metric space and applications
topic Common fixed point
weakly compatible
generalized condition (B)
partial-metric space
quasipartial metric space
47H10
54H25
url http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0028/dema-2017-0028.xml?format=INT
work_keys_str_mv AT tomaranita commonfixedpointtheoremsviageneralizedconditionbinquasipartialmetricspaceandapplications
AT beloulsaid commonfixedpointtheoremsviageneralizedconditionbinquasipartialmetricspaceandapplications
AT sharmaritu commonfixedpointtheoremsviageneralizedconditionbinquasipartialmetricspaceandapplications
AT upadhyayshivangi commonfixedpointtheoremsviageneralizedconditionbinquasipartialmetricspaceandapplications