Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold
Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Altern...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-05-01
|
Series: | Cells |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4409/12/10/1353 |
_version_ | 1827741782827335680 |
---|---|
author | Gang Wu Ralf Baumeister Thomas Heimbucher |
author_facet | Gang Wu Ralf Baumeister Thomas Heimbucher |
author_sort | Gang Wu |
collection | DOAJ |
description | Temperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer. |
first_indexed | 2024-03-11T03:51:59Z |
format | Article |
id | doaj.art-b30b905bf0cf404dacea590bfde3dc07 |
institution | Directory Open Access Journal |
issn | 2073-4409 |
language | English |
last_indexed | 2024-03-11T03:51:59Z |
publishDate | 2023-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Cells |
spelling | doaj.art-b30b905bf0cf404dacea590bfde3dc072023-11-18T00:52:20ZengMDPI AGCells2073-44092023-05-011210135310.3390/cells12101353Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to ColdGang Wu0Ralf Baumeister1Thomas Heimbucher2Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, GermanyBioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, GermanyBioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, GermanyTemperature changes and periods of detrimental cold occur frequently for many organisms in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a fuel source. Alternatively, certain species are able to repress their metabolism during cold periods and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms, which are unable to maintain their internal temperature, predominantly increase membrane fluidity to diminish cold-related damage from low-temperature stress. However, alterations of molecular pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly understood. Here, we review organismal responses that adjust fat metabolism during detrimental cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold treatments and could have important implications for medical applications of hypothermia in humans. This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.https://www.mdpi.com/2073-4409/12/10/1353lipid metabolismcold adaptationmembrane fluidityadiponectin receptornuclear hormone receptorshibernation |
spellingShingle | Gang Wu Ralf Baumeister Thomas Heimbucher Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold Cells lipid metabolism cold adaptation membrane fluidity adiponectin receptor nuclear hormone receptors hibernation |
title | Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold |
title_full | Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold |
title_fullStr | Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold |
title_full_unstemmed | Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold |
title_short | Molecular Mechanisms of Lipid-Based Metabolic Adaptation Strategies in Response to Cold |
title_sort | molecular mechanisms of lipid based metabolic adaptation strategies in response to cold |
topic | lipid metabolism cold adaptation membrane fluidity adiponectin receptor nuclear hormone receptors hibernation |
url | https://www.mdpi.com/2073-4409/12/10/1353 |
work_keys_str_mv | AT gangwu molecularmechanismsoflipidbasedmetabolicadaptationstrategiesinresponsetocold AT ralfbaumeister molecularmechanismsoflipidbasedmetabolicadaptationstrategiesinresponsetocold AT thomasheimbucher molecularmechanismsoflipidbasedmetabolicadaptationstrategiesinresponsetocold |