Thermal Conductivity Identification in Functionally Graded Materials via a Machine Learning Strategy Based on Singular Boundary Method

A machine learning strategy based on the semi-analytical singular boundary method (SBM) is presented for the thermal conductivity identification of functionally graded materials (FGMs). In this study, only the temperature or heat flux on the surface or interior of FGMs can be measured by the thermal...

Full description

Bibliographic Details
Main Authors: Wenzhi Xu, Zhuojia Fu, Qiang Xi
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/458
Description
Summary:A machine learning strategy based on the semi-analytical singular boundary method (SBM) is presented for the thermal conductivity identification of functionally graded materials (FGMs). In this study, only the temperature or heat flux on the surface or interior of FGMs can be measured by the thermal sensors, and the SBM is used to construct the database of the relationship between the thermal conductivity and the temperature distribution of the functionally graded structure. Based on the aforementioned constructed database, the artificial neural network-based machine learning strategy was implemented to identify the thermal conductivity of FGMs. Finally, several benchmark examples are presented to verify the feasibility, robustness, and applicability of the proposed machine learning strategy.
ISSN:2227-7390