Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets

<p>Lung-deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct measurements or by calculation based on the empirical lung depositi...

Full description

Bibliographic Details
Main Authors: P. L. Fung, M. A. Zaidan, J. V. Niemi, E. Saukko, H. Timonen, A. Kousa, J. Kuula, T. Rönkkö, A. Karppinen, S. Tarkoma, M. Kulmala, T. Petäjä, T. Hussein
Format: Article
Language:English
Published: Copernicus Publications 2022-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/1861/2022/acp-22-1861-2022.pdf
_version_ 1828855270975995904
author P. L. Fung
P. L. Fung
M. A. Zaidan
M. A. Zaidan
M. A. Zaidan
J. V. Niemi
E. Saukko
H. Timonen
A. Kousa
J. Kuula
T. Rönkkö
A. Karppinen
S. Tarkoma
M. Kulmala
M. Kulmala
T. Petäjä
T. Petäjä
T. Hussein
T. Hussein
author_facet P. L. Fung
P. L. Fung
M. A. Zaidan
M. A. Zaidan
M. A. Zaidan
J. V. Niemi
E. Saukko
H. Timonen
A. Kousa
J. Kuula
T. Rönkkö
A. Karppinen
S. Tarkoma
M. Kulmala
M. Kulmala
T. Petäjä
T. Petäjä
T. Hussein
T. Hussein
author_sort P. L. Fung
collection DOAJ
description <p>Lung-deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution. However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result, LDSA data are often scarce spatially and temporally. In light of this, we developed a novel statistical model, named the input-adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant variables and meteorological conditions. During the measurement period in 2017–2018, we retrieved LDSA data measured by Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA <span class="inline-formula">=</span> 19.7 <span class="inline-formula">±</span> 11.3 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) site and an urban background (UB, average LDSA <span class="inline-formula">=</span> 11.2 <span class="inline-formula">±</span> 7.1 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) site in Helsinki, Finland. For the continuous estimation of LDSA, the IAME model was automatised to select the best combination of input variables, including a maximum of three fixed effect variables and three time indictors as random effect variables. Altogether, 696 submodels were generated and ranked by the coefficient of determination (<span class="inline-formula"><i>R</i><sup>2</sup></span>), mean absolute error (MAE) and centred root-mean-square difference (cRMSD) in order. At the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than 2.5 <span class="inline-formula">µ</span>m (PM<span class="inline-formula"><sub>2.5</sub></span>), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular emissions. At the UB site, the LDSA concentrations were found to be correlated with PM<span class="inline-formula"><sub>2.5</sub></span>, BC and carbon monoxide (CO). The accuracy of the overall model was better at the SC site (<span class="inline-formula"><i>R</i><sup>2</sup>=0.80</span>, MAE <span class="inline-formula">=</span> 3.7 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) than at the UB site (<span class="inline-formula"><i>R</i><sup>2</sup>=0.77</span>, MAE <span class="inline-formula">=</span> 2.3 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>), plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission source. The results also demonstrated that the additional adjustment by taking random effects into account improved the sensitivity and the accuracy of the fixed effect model. Due to its adaptive input<span id="page1862"/> selection and inclusion of random effects, IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference stations.</p>
first_indexed 2024-12-13T00:51:39Z
format Article
id doaj.art-b31924245e2041ad84026bc847184bb5
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-13T00:51:39Z
publishDate 2022-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-b31924245e2041ad84026bc847184bb52022-12-22T00:04:54ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-02-01221861188210.5194/acp-22-1861-2022Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasetsP. L. Fung0P. L. Fung1M. A. Zaidan2M. A. Zaidan3M. A. Zaidan4J. V. Niemi5E. Saukko6H. Timonen7A. Kousa8J. Kuula9T. Rönkkö10A. Karppinen11S. Tarkoma12M. Kulmala13M. Kulmala14T. Petäjä15T. Petäjä16T. Hussein17T. Hussein18Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandHelsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandHelsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, ChinaHelsinki Region Environmental Services Authority (HSY), P.O. Box 100, 00066 Helsinki, FinlandPegasor Oy, 33100 Tampere, FinlandAtmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, FinlandHelsinki Region Environmental Services Authority (HSY), P.O. Box 100, 00066 Helsinki, FinlandAtmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, FinlandAerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, FinlandAtmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, FinlandDepartment of Computer Science, Faculty of Science, University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, FinlandDepartment of Physics, the University of Jordan, Amman 11942, Jordan<p>Lung-deposited surface area (LDSA) has been considered to be a better metric to explain nanoparticle toxicity instead of the commonly used particulate mass concentration. LDSA concentrations can be obtained either by direct measurements or by calculation based on the empirical lung deposition model and measurements of particle size distribution. However, the LDSA or size distribution measurements are neither compulsory nor regulated by the government. As a result, LDSA data are often scarce spatially and temporally. In light of this, we developed a novel statistical model, named the input-adaptive mixed-effects (IAME) model, to estimate LDSA based on other already existing measurements of air pollutant variables and meteorological conditions. During the measurement period in 2017–2018, we retrieved LDSA data measured by Pegasor AQ Urban and other variables at a street canyon (SC, average LDSA <span class="inline-formula">=</span> 19.7 <span class="inline-formula">±</span> 11.3 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) site and an urban background (UB, average LDSA <span class="inline-formula">=</span> 11.2 <span class="inline-formula">±</span> 7.1 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) site in Helsinki, Finland. For the continuous estimation of LDSA, the IAME model was automatised to select the best combination of input variables, including a maximum of three fixed effect variables and three time indictors as random effect variables. Altogether, 696 submodels were generated and ranked by the coefficient of determination (<span class="inline-formula"><i>R</i><sup>2</sup></span>), mean absolute error (MAE) and centred root-mean-square difference (cRMSD) in order. At the SC site, the LDSA concentrations were best estimated by mass concentration of particle of diameters smaller than 2.5 <span class="inline-formula">µ</span>m (PM<span class="inline-formula"><sub>2.5</sub></span>), total particle number concentration (PNC) and black carbon (BC), all of which are closely connected with the vehicular emissions. At the UB site, the LDSA concentrations were found to be correlated with PM<span class="inline-formula"><sub>2.5</sub></span>, BC and carbon monoxide (CO). The accuracy of the overall model was better at the SC site (<span class="inline-formula"><i>R</i><sup>2</sup>=0.80</span>, MAE <span class="inline-formula">=</span> 3.7 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>) than at the UB site (<span class="inline-formula"><i>R</i><sup>2</sup>=0.77</span>, MAE <span class="inline-formula">=</span> 2.3 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>2</sup></span> cm<span class="inline-formula"><sup>−3</sup></span>), plausibly because the LDSA source was more tightly controlled by the close-by vehicular emission source. The results also demonstrated that the additional adjustment by taking random effects into account improved the sensitivity and the accuracy of the fixed effect model. Due to its adaptive input<span id="page1862"/> selection and inclusion of random effects, IAME could fill up missing data or even serve as a network of virtual sensors to complement the measurements at reference stations.</p>https://acp.copernicus.org/articles/22/1861/2022/acp-22-1861-2022.pdf
spellingShingle P. L. Fung
P. L. Fung
M. A. Zaidan
M. A. Zaidan
M. A. Zaidan
J. V. Niemi
E. Saukko
H. Timonen
A. Kousa
J. Kuula
T. Rönkkö
A. Karppinen
S. Tarkoma
M. Kulmala
M. Kulmala
T. Petäjä
T. Petäjä
T. Hussein
T. Hussein
Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
Atmospheric Chemistry and Physics
title Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
title_full Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
title_fullStr Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
title_full_unstemmed Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
title_short Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited surface area (LDSA) using multipollutant datasets
title_sort input adaptive linear mixed effects model for estimating alveolar lung deposited surface area ldsa using multipollutant datasets
url https://acp.copernicus.org/articles/22/1861/2022/acp-22-1861-2022.pdf
work_keys_str_mv AT plfung inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT plfung inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT mazaidan inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT mazaidan inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT mazaidan inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT jvniemi inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT esaukko inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT htimonen inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT akousa inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT jkuula inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT tronkko inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT akarppinen inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT starkoma inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT mkulmala inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT mkulmala inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT tpetaja inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT tpetaja inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT thussein inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets
AT thussein inputadaptivelinearmixedeffectsmodelforestimatingalveolarlungdepositedsurfacearealdsausingmultipollutantdatasets