Summary: | Abstract Background For soaring birds, the ability to benefit from variable airflow dynamics is crucial, especially while crossing natural barriers such as vast water bodies during migration. Soaring birds also take advantage of warm rising air, so-called thermals, that allow birds to ascend passively to higher altitudes with reduced energy costs. Although it is well known that soaring migrants generally benefit from supportive winds and thermals, the potential of uplifts and other weather factors enabling soaring behavior remains unsolved. Methods In this study, we GPS-tracked 19 Red Kites, Milvus milvus, from the Central European population that crossed the Adriatic Sea on their autumn migration. Migratory tracks were annotated with weather data (wind support, side wind, temperature difference between air and surface—proxy for thermal uplift, cloud cover, and precipitation) to assess their effect on Red Kites' decisions and soaring performance along their migration across the Adriatic Sea and land. Results Wind support affected the timing of crossing over the Adriatic Sea. We found that temperature differences and horizontal winds positively affected soaring sea movement by providing lift support in otherwise weak thermals. Furthermore, we found that the soaring patterns of tracked raptors were affected by the strength and direction of prevailing winds. Conclusion Thanks to modern GPS–GSM telemetry devices and available data from online databases, we explored the effect of different weather variables on the occurrence of soaring behavior and soaring patterns of migratory raptors. We revealed how wind affected the soaring pattern and that tracked birds could soar in weak thermals by utilizing horizontal winds, thus reducing energy costs of active flapping flight over vast water bodies.
|