A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator

Abstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guar...

Full description

Bibliographic Details
Main Authors: Enrico Chinello, Miguel A. Modestino, Laurent Coulot, Mathieu Ackermann, Florian Gerlich, Demetri Psaltis, Christophe Moser
Format: Article
Language:English
Published: Wiley 2017-12-01
Series:Global Challenges
Subjects:
Online Access:https://doi.org/10.1002/gch2.201700095
_version_ 1797743739482931200
author Enrico Chinello
Miguel A. Modestino
Laurent Coulot
Mathieu Ackermann
Florian Gerlich
Demetri Psaltis
Christophe Moser
author_facet Enrico Chinello
Miguel A. Modestino
Laurent Coulot
Mathieu Ackermann
Florian Gerlich
Demetri Psaltis
Christophe Moser
author_sort Enrico Chinello
collection DOAJ
description Abstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, VOC = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations.
first_indexed 2024-03-12T14:59:45Z
format Article
id doaj.art-b344b57380084bc79ae0eb8fbb0cda6f
institution Directory Open Access Journal
issn 2056-6646
language English
last_indexed 2024-03-12T14:59:45Z
publishDate 2017-12-01
publisher Wiley
record_format Article
series Global Challenges
spelling doaj.art-b344b57380084bc79ae0eb8fbb0cda6f2023-08-14T09:40:28ZengWileyGlobal Challenges2056-66462017-12-0119n/an/a10.1002/gch2.201700095A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar ConcentratorEnrico Chinello0Miguel A. Modestino1Laurent Coulot2Mathieu Ackermann3Florian Gerlich4Demetri Psaltis5Christophe Moser6School of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandTandon School of Engineering New York University (NYU) Rogers Hall 600A Brooklyn NY 11201 USAInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandSchool of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandSchool of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandAbstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, VOC = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations.https://doi.org/10.1002/gch2.201700095chloralkalichlorinehydrogenmultijunction photovoltaicssolar concentrators
spellingShingle Enrico Chinello
Miguel A. Modestino
Laurent Coulot
Mathieu Ackermann
Florian Gerlich
Demetri Psaltis
Christophe Moser
A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
Global Challenges
chloralkali
chlorine
hydrogen
multijunction photovoltaics
solar concentrators
title A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_full A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_fullStr A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_full_unstemmed A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_short A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
title_sort 25 1 efficient stand alone solar chloralkali generator employing a microtracking solar concentrator
topic chloralkali
chlorine
hydrogen
multijunction photovoltaics
solar concentrators
url https://doi.org/10.1002/gch2.201700095
work_keys_str_mv AT enricochinello a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT miguelamodestino a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT laurentcoulot a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT mathieuackermann a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT floriangerlich a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT demetripsaltis a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT christophemoser a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT enricochinello 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT miguelamodestino 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT laurentcoulot 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT mathieuackermann 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT floriangerlich 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT demetripsaltis 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator
AT christophemoser 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator