A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator
Abstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guar...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-12-01
|
Series: | Global Challenges |
Subjects: | |
Online Access: | https://doi.org/10.1002/gch2.201700095 |
_version_ | 1797743739482931200 |
---|---|
author | Enrico Chinello Miguel A. Modestino Laurent Coulot Mathieu Ackermann Florian Gerlich Demetri Psaltis Christophe Moser |
author_facet | Enrico Chinello Miguel A. Modestino Laurent Coulot Mathieu Ackermann Florian Gerlich Demetri Psaltis Christophe Moser |
author_sort | Enrico Chinello |
collection | DOAJ |
description | Abstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, VOC = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations. |
first_indexed | 2024-03-12T14:59:45Z |
format | Article |
id | doaj.art-b344b57380084bc79ae0eb8fbb0cda6f |
institution | Directory Open Access Journal |
issn | 2056-6646 |
language | English |
last_indexed | 2024-03-12T14:59:45Z |
publishDate | 2017-12-01 |
publisher | Wiley |
record_format | Article |
series | Global Challenges |
spelling | doaj.art-b344b57380084bc79ae0eb8fbb0cda6f2023-08-14T09:40:28ZengWileyGlobal Challenges2056-66462017-12-0119n/an/a10.1002/gch2.201700095A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar ConcentratorEnrico Chinello0Miguel A. Modestino1Laurent Coulot2Mathieu Ackermann3Florian Gerlich4Demetri Psaltis5Christophe Moser6School of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandTandon School of Engineering New York University (NYU) Rogers Hall 600A Brooklyn NY 11201 USAInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandInsolight Sarl Chemin de la Raye, 13 ‐ Ecublens CH 1015 SwitzerlandSchool of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandSchool of Engineering ‐ STI Ecole Polytechnique Federale de Lausanne (EPFL) EPFL STI IMT LAPD BM4110 Station 17 CH 1015 Lausanne SwitzerlandAbstract Chlorine is a large‐scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane‐based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage–current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off‐grid solar‐powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection‐molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple‐junction solar cells provide the necessary potential (open‐circuit voltage, VOC = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar‐to‐chemical conversion efficiency (SCE). The device represents the proof‐of‐principle of a new generation stand‐alone chlorine production system for off‐grid utilization in remote and inaccessible locations.https://doi.org/10.1002/gch2.201700095chloralkalichlorinehydrogenmultijunction photovoltaicssolar concentrators |
spellingShingle | Enrico Chinello Miguel A. Modestino Laurent Coulot Mathieu Ackermann Florian Gerlich Demetri Psaltis Christophe Moser A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator Global Challenges chloralkali chlorine hydrogen multijunction photovoltaics solar concentrators |
title | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_full | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_fullStr | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_full_unstemmed | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_short | A 25.1% Efficient Stand‐Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator |
title_sort | 25 1 efficient stand alone solar chloralkali generator employing a microtracking solar concentrator |
topic | chloralkali chlorine hydrogen multijunction photovoltaics solar concentrators |
url | https://doi.org/10.1002/gch2.201700095 |
work_keys_str_mv | AT enricochinello a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT miguelamodestino a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT laurentcoulot a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT mathieuackermann a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT floriangerlich a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT demetripsaltis a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT christophemoser a251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT enricochinello 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT miguelamodestino 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT laurentcoulot 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT mathieuackermann 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT floriangerlich 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT demetripsaltis 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator AT christophemoser 251efficientstandalonesolarchloralkaligeneratoremployingamicrotrackingsolarconcentrator |