Identification of Superclusters and Their Properties in the Sloan Digital Sky Survey Using the WHL Cluster Catalog

Superclusters are the largest massive structures in the cosmic web, on tens to hundreds of megaparsec scales. They are the largest assembly of galaxy clusters in the Universe. Apart from a few detailed studies of such structures, their evolutionary mechanism is still an open question. In order to ad...

Full description

Bibliographic Details
Main Authors: Shishir Sankhyayan, Joydeep Bagchi, Elmo Tempel, Surhud More, Maret Einasto, Pratik Dabhade, Somak Raychaudhury, Ramana Athreya, Pekka Heinämäki
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acfaeb
Description
Summary:Superclusters are the largest massive structures in the cosmic web, on tens to hundreds of megaparsec scales. They are the largest assembly of galaxy clusters in the Universe. Apart from a few detailed studies of such structures, their evolutionary mechanism is still an open question. In order to address and answer the relevant questions, a statistically significant, large catalog of superclusters covering a wide range of redshifts and sky areas is essential. Here, we present a large catalog of 662 superclusters identified using a modified friends-of-friends algorithm applied on the WHL (Wen–Han–Liu) cluster catalog within a redshift range of 0.05 ≤ z ≤ 0.42. We name the most massive supercluster at z ∼ 0.25 as the Einasto Supercluster . We find that the median mass of superclusters is ∼5.8 × 10 ^15 M _⊙ and the median size ∼65 Mpc. We find that the supercluster environment slightly affects the growth of clusters. We compare the properties of the observed superclusters with the mock superclusters extracted from the Horizon Run 4 cosmological simulation. The properties of the superclusters in the mocks and observations are in broad agreement. We find that the density contrast of a supercluster is correlated with its maximum extent with a power-law index, α ∼ −2. The phase-space distribution of mock superclusters shows that, on average, ∼90% of part of a supercluster has a gravitational influence on its constituents. We also show the mock halos’ average number density and peculiar velocity profiles in and around the superclusters.
ISSN:1538-4357