Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations
The chemical composition (ions, elements, polycyclic aromatic hydrocarbons) of aerosol and gaseous impurities (SO2, HNO3, HCl, NH3) in the surface layer of the atmosphere in Barentsburg, located on the Western Svalbard island (Svalbard archipelago), is analyzed. Atmospheric aerosol and gaseous impur...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Nauka
2020-04-01
|
Series: | Лëд и снег |
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/787 |
_version_ | 1797878167931715584 |
---|---|
author | L. P. Golobokova T. V. Khodzher D. G. Chernov O. R. Sidorova O. I. Khuriganova N. A. Onischuk N. A. Zhuchenko I. I. Marinaite |
author_facet | L. P. Golobokova T. V. Khodzher D. G. Chernov O. R. Sidorova O. I. Khuriganova N. A. Onischuk N. A. Zhuchenko I. I. Marinaite |
author_sort | L. P. Golobokova |
collection | DOAJ |
description | The chemical composition (ions, elements, polycyclic aromatic hydrocarbons) of aerosol and gaseous impurities (SO2, HNO3, HCl, NH3) in the surface layer of the atmosphere in Barentsburg, located on the Western Svalbard island (Svalbard archipelago), is analyzed. Atmospheric aerosol and gaseous impurities brought to the Arctic from middle latitudes and deposited on snow and ice not only interact with various natural objects, but also spread to long distances with melting dirty snow and ice. Air sampling was carried out following to methodology adopted by the international networks of the atmospheric monitoring programs in South-East Asia (EANET) and Europe (EMEP). In 2011-2015, the observations of the chemical composition of the atmospheric ground layer were performed daily during the light season (April–September), and monthly from April 2016 to 2018. The largest total ion concentrations were observed in 2011–2012. Seasonal variability of ion concentrations in the aerosol was characterized by high values in the cold period (October–February) and low values in the warm one (May–June). High values of the coefficient of correlation between ions Na+ and Cl− (r = 0,93) as well as between Mg2+ and Cl− (r = 0,81) throughout the year show that the main source of the aerosol is the sea surface. The significant correlation between ions K+, NO3-, NH4+, SO42−, K+, SO42− in the polar night point to the influence of local sources: coal mining at the mine and its3 combustion at thermal power plants. Emission of polycyclic aromatic hydrocarbons and the gaseous impurities (SO2, HNO3) into the atmosphere, especially during the polar night, is also influenced by local sources. Among the elements the maximum enrichment of the aerosol was revealed for As, Cr, Zn, Mo, Cd, Sn, Sb, W, and Pb with a low content of Cd, Sn, Sb, W, and Pb in the coal, sludge and on the underlying surface. On the basis of the elemental composition of the aerosol and the back-trajectory analysis, it was shown that the air masses enriched in heavy metals come to the area of the Barentsburg settlement from middle latitudes. |
first_indexed | 2024-04-10T02:28:30Z |
format | Article |
id | doaj.art-b36db0f537294a4697171abfa998007d |
institution | Directory Open Access Journal |
issn | 2076-6734 2412-3765 |
language | Russian |
last_indexed | 2024-04-10T02:28:30Z |
publishDate | 2020-04-01 |
publisher | Nauka |
record_format | Article |
series | Лëд и снег |
spelling | doaj.art-b36db0f537294a4697171abfa998007d2023-03-13T08:01:20ZrusNaukaЛëд и снег2076-67342412-37652020-04-01601859710.31857/S2076673420010025604Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observationsL. P. Golobokova0T. V. Khodzher1D. G. Chernov2O. R. Sidorova3O. I. Khuriganova4N. A. Onischuk5N. A. Zhuchenko6I. I. Marinaite7Лимнологический институт СО РАНЛимнологический институт СО РАНИнститут оптики атмосферы им. В. Е. Зуева СО РАНАрктический и Антарктический научно-исследовательский институтЛимнологический институт СО РАНЛимнологический институт СО РАНЛимнологический институт СО РАНЛимнологический институт СО РАНThe chemical composition (ions, elements, polycyclic aromatic hydrocarbons) of aerosol and gaseous impurities (SO2, HNO3, HCl, NH3) in the surface layer of the atmosphere in Barentsburg, located on the Western Svalbard island (Svalbard archipelago), is analyzed. Atmospheric aerosol and gaseous impurities brought to the Arctic from middle latitudes and deposited on snow and ice not only interact with various natural objects, but also spread to long distances with melting dirty snow and ice. Air sampling was carried out following to methodology adopted by the international networks of the atmospheric monitoring programs in South-East Asia (EANET) and Europe (EMEP). In 2011-2015, the observations of the chemical composition of the atmospheric ground layer were performed daily during the light season (April–September), and monthly from April 2016 to 2018. The largest total ion concentrations were observed in 2011–2012. Seasonal variability of ion concentrations in the aerosol was characterized by high values in the cold period (October–February) and low values in the warm one (May–June). High values of the coefficient of correlation between ions Na+ and Cl− (r = 0,93) as well as between Mg2+ and Cl− (r = 0,81) throughout the year show that the main source of the aerosol is the sea surface. The significant correlation between ions K+, NO3-, NH4+, SO42−, K+, SO42− in the polar night point to the influence of local sources: coal mining at the mine and its3 combustion at thermal power plants. Emission of polycyclic aromatic hydrocarbons and the gaseous impurities (SO2, HNO3) into the atmosphere, especially during the polar night, is also influenced by local sources. Among the elements the maximum enrichment of the aerosol was revealed for As, Cr, Zn, Mo, Cd, Sn, Sb, W, and Pb with a low content of Cd, Sn, Sb, W, and Pb in the coal, sludge and on the underlying surface. On the basis of the elemental composition of the aerosol and the back-trajectory analysis, it was shown that the air masses enriched in heavy metals come to the area of the Barentsburg settlement from middle latitudes.https://ice-snow.igras.ru/jour/article/view/787арктикаатмосферный аэрозольбаренцбурггазообразные примесиионыпаухимические элементы |
spellingShingle | L. P. Golobokova T. V. Khodzher D. G. Chernov O. R. Sidorova O. I. Khuriganova N. A. Onischuk N. A. Zhuchenko I. I. Marinaite Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations Лëд и снег арктика атмосферный аэрозоль баренцбург газообразные примеси ионы пау химические элементы |
title | Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations |
title_full | Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations |
title_fullStr | Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations |
title_full_unstemmed | Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations |
title_short | Chemical composition of the near-surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations |
title_sort | chemical composition of the near surface atmospheric aerosol in barentsburg svalbard based on the long term observations |
topic | арктика атмосферный аэрозоль баренцбург газообразные примеси ионы пау химические элементы |
url | https://ice-snow.igras.ru/jour/article/view/787 |
work_keys_str_mv | AT lpgolobokova chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT tvkhodzher chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT dgchernov chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT orsidorova chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT oikhuriganova chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT naonischuk chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT nazhuchenko chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations AT iimarinaite chemicalcompositionofthenearsurfaceatmosphericaerosolinbarentsburgsvalbardbasedonthelongtermobservations |