Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform

The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here...

Full description

Bibliographic Details
Main Authors: M. Ganzhorn, G. Salis, D. J. Egger, A. Fuhrer, M. Mergenthaler, C. Müller, P. Müller, S. Paredes, M. Pechal, M. Werninghaus, S. Filipp
Format: Article
Language:English
Published: American Physical Society 2020-09-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.2.033447
_version_ 1797211287550164992
author M. Ganzhorn
G. Salis
D. J. Egger
A. Fuhrer
M. Mergenthaler
C. Müller
P. Müller
S. Paredes
M. Pechal
M. Werninghaus
S. Filipp
author_facet M. Ganzhorn
G. Salis
D. J. Egger
A. Fuhrer
M. Mergenthaler
C. Müller
P. Müller
S. Paredes
M. Pechal
M. Werninghaus
S. Filipp
author_sort M. Ganzhorn
collection DOAJ
description The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of 0.9±0.03 and 1.3±0.4% for the CZ and the iSWAP gate, respectively. We argue that spurious ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.
first_indexed 2024-04-24T10:24:06Z
format Article
id doaj.art-b38d9cbe131f4ebc93c5e08bdddebb86
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:24:06Z
publishDate 2020-09-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-b38d9cbe131f4ebc93c5e08bdddebb862024-04-12T17:00:50ZengAmerican Physical SocietyPhysical Review Research2643-15642020-09-012303344710.1103/PhysRevResearch.2.033447Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platformM. GanzhornG. SalisD. J. EggerA. FuhrerM. MergenthalerC. MüllerP. MüllerS. ParedesM. PechalM. WerninghausS. FilippThe possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of 0.9±0.03 and 1.3±0.4% for the CZ and the iSWAP gate, respectively. We argue that spurious ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.http://doi.org/10.1103/PhysRevResearch.2.033447
spellingShingle M. Ganzhorn
G. Salis
D. J. Egger
A. Fuhrer
M. Mergenthaler
C. Müller
P. Müller
S. Paredes
M. Pechal
M. Werninghaus
S. Filipp
Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
Physical Review Research
title Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
title_full Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
title_fullStr Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
title_full_unstemmed Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
title_short Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
title_sort benchmarking the noise sensitivity of different parametric two qubit gates in a single superconducting quantum computing platform
url http://doi.org/10.1103/PhysRevResearch.2.033447
work_keys_str_mv AT mganzhorn benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT gsalis benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT djegger benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT afuhrer benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT mmergenthaler benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT cmuller benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT pmuller benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT sparedes benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT mpechal benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT mwerninghaus benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform
AT sfilipp benchmarkingthenoisesensitivityofdifferentparametrictwoqubitgatesinasinglesuperconductingquantumcomputingplatform