On Order Prime Divisor Graphs of Finite Groups

The order prime divisor graph 𝒫𝒟(G) of a finite group G is a simple graph whose vertex set is G and two vertices a, b ∈ G are adjacent if and only if either ab = e or o(ab) is some prime number, where e is the identity element of the group G and o(x) denotes the order of an element x ∈ G. In this pa...

Full description

Bibliographic Details
Main Authors: Sen Mridul K., Maity Sunil K., Das Sumanta
Format: Article
Language:English
Published: University of Zielona Góra 2021-11-01
Series:Discussiones Mathematicae - General Algebra and Applications
Subjects:
Online Access:https://doi.org/10.7151/dmgaa.1372
Description
Summary:The order prime divisor graph 𝒫𝒟(G) of a finite group G is a simple graph whose vertex set is G and two vertices a, b ∈ G are adjacent if and only if either ab = e or o(ab) is some prime number, where e is the identity element of the group G and o(x) denotes the order of an element x ∈ G. In this paper, we establish the necessary and sufficient condition for the completeness of order prime divisor graph 𝒫𝒟(G) of a group G. Concentrating on the graph 𝒫𝒟(Dn), we investigate several properties like degrees, girth, regularity, Eulerianity, Hamiltonicity, planarity etc. We characterize some graph theoretic properties of 𝒫𝒟 (ℤn), 𝒫𝒟 (Sn), 𝒫𝒟 (An).
ISSN:2084-0373