Stieltjes Property of Quasi-Stable Matrix Polynomials
In this paper, basing on the theory of matricial Hamburger moment problems, we establish the intrinsic connections between the quasi-stability of a monic or comonic matrix polynomial and the Stieltjes property of a rational matrix-valued function built from the even–odd split of the original matrix...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/23/4440 |
Summary: | In this paper, basing on the theory of matricial Hamburger moment problems, we establish the intrinsic connections between the quasi-stability of a monic or comonic matrix polynomial and the Stieltjes property of a rational matrix-valued function built from the even–odd split of the original matrix polynomial. As applications of these connections, we obtain some new criteria for quasi-stable matrix polynomials and Hurwitz stable matrix polynomials, respectively. |
---|---|
ISSN: | 2227-7390 |