The modular sequence space of $\chi^{2}$

In this paper we introduce the modular sequence space of $\chi^{2}$ and examine some topological properties of these space also establish some duals results among them. Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space $\ell_{M}$ which is called an Orlicz s...

Full description

Bibliographic Details
Main Authors: N. Subramanian, P. Thirunavukkarasu, R. Babu
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19385
_version_ 1819161242331250688
author N. Subramanian
P. Thirunavukkarasu
R. Babu
author_facet N. Subramanian
P. Thirunavukkarasu
R. Babu
author_sort N. Subramanian
collection DOAJ
description In this paper we introduce the modular sequence space of $\chi^{2}$ and examine some topological properties of these space also establish some duals results among them. Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space $\ell_{M}$ which is called an Orlicz sequence space. Another generalization of Orlicz sequence spaces is due to Woo [9]. We define the sequence spaces $\chi^{2}_{f\lambda}$ and $\chi^{2\lambda}_{g},$ where $f=\left(f_{mn}\right)$ and $g=\left(g_{mn}\right)$ are sequences of modulus functions such that $f_{mn}$ and $g_{mn}$ be mutually complementary for each $m,n.$
first_indexed 2024-12-22T17:09:14Z
format Article
id doaj.art-b3b198aa308b46a993185c8050ee2eff
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-22T17:09:14Z
publishDate 2014-01-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-b3b198aa308b46a993185c8050ee2eff2022-12-21T18:19:06ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-01321718710.5269/bspm.v32i1.193859300The modular sequence space of $\chi^{2}$N. Subramanian0P. Thirunavukkarasu1R. Babu2SASTRA University Department of MathematicsPeriyar E. V. R. College (Autonomous) P.G. and Research Department of MathematicsShanmugha Polytechnic College Department of MathematicsIn this paper we introduce the modular sequence space of $\chi^{2}$ and examine some topological properties of these space also establish some duals results among them. Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space $\ell_{M}$ which is called an Orlicz sequence space. Another generalization of Orlicz sequence spaces is due to Woo [9]. We define the sequence spaces $\chi^{2}_{f\lambda}$ and $\chi^{2\lambda}_{g},$ where $f=\left(f_{mn}\right)$ and $g=\left(g_{mn}\right)$ are sequences of modulus functions such that $f_{mn}$ and $g_{mn}$ be mutually complementary for each $m,n.$http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19385analytic sequencemodulus functiondouble sequences$\chi^{2}$ spacemodularduals
spellingShingle N. Subramanian
P. Thirunavukkarasu
R. Babu
The modular sequence space of $\chi^{2}$
Boletim da Sociedade Paranaense de Matemática
analytic sequence
modulus function
double sequences
$\chi^{2}$ space
modular
duals
title The modular sequence space of $\chi^{2}$
title_full The modular sequence space of $\chi^{2}$
title_fullStr The modular sequence space of $\chi^{2}$
title_full_unstemmed The modular sequence space of $\chi^{2}$
title_short The modular sequence space of $\chi^{2}$
title_sort modular sequence space of chi 2
topic analytic sequence
modulus function
double sequences
$\chi^{2}$ space
modular
duals
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19385
work_keys_str_mv AT nsubramanian themodularsequencespaceofchi2
AT pthirunavukkarasu themodularsequencespaceofchi2
AT rbabu themodularsequencespaceofchi2
AT nsubramanian modularsequencespaceofchi2
AT pthirunavukkarasu modularsequencespaceofchi2
AT rbabu modularsequencespaceofchi2