Catalytic Performance of CPM-200-In/Mg in the Cycloaddition of CO<sub>2</sub> and Epoxides
Crystalline porous materials (CPM)-200-In and CPM-200-In/Mg metal-organic frameworks (MOFs) were synthesized by a solvothermal method and were characterized by using powder X-ray diffraction (PXRD), FT-IR, Brunauer–Emmett–Teller (BET), temperature programmed desorption (TPD), TGA, XPS, and SEM-EDS....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Catalysts |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4344/11/4/430 |
Summary: | Crystalline porous materials (CPM)-200-In and CPM-200-In/Mg metal-organic frameworks (MOFs) were synthesized by a solvothermal method and were characterized by using powder X-ray diffraction (PXRD), FT-IR, Brunauer–Emmett–Teller (BET), temperature programmed desorption (TPD), TGA, XPS, and SEM-EDS. They were used as heterogeneous catalysts for the cycloaddition of CO<sub>2</sub> with epoxides and found to be highly efficient toward the cycloaddition reaction at moderate reaction conditions under solvent-free conditions. The catalyst was easily separated by a simple filtration and can be reused up to five consecutive times without any considerable decrease of its initial activity. CPM-200-In/Mg showed excellent catalytic performance in the cycloaddition reaction due to the synergistic role of the acidic sites and basic sites. A plausible reaction mechanism for the CPM-200-In/Mg MOF catalyzed cycloaddition reaction is proposed based on the experimental results and our previously reported DFT (Density Functional Theory) studies. |
---|---|
ISSN: | 2073-4344 |