Root responses to boron deficiency mediated by ethylene

Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana seedlings, leading to a reduction in the primary root growth and an increase in the length and number of root hairs. At short-term (hours), B deficiency causes a decrease in the cell elongation of the primary roo...

Full description

Bibliographic Details
Main Authors: Agustín eGonzález-Fontes, M. Begoña eHerrera-Rodríguez, Esperanza M. eMartín-Rejano, M. Teresa eNavarro-Gochicoa, Jesús eRexach, Juan J. eCamacho-Cristóbal
Format: Article
Language:English
Published: Frontiers Media S.A. 2016-01-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpls.2015.01103/full
Description
Summary:Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana seedlings, leading to a reduction in the primary root growth and an increase in the length and number of root hairs. At short-term (hours), B deficiency causes a decrease in the cell elongation of the primary root, resulting in a lower growth. Experimental approaches using ethylene insensitive arabidopsis mutants, inhibitors of ethylene response, and GUS reporter lines suggest that ethylene is involved in these responses of the primary root to B deficiency. Furthermore, it has been shown that auxin participates in the inhibition of cell elongation under short-term B deprivation. These results support that an interaction between ethylene and auxin plays an important role in controlling the primary root elongation, in which a number of genes related to the synthesis, transport, and signaling of both phytohormones could modulate this effect. Evidence for a root cross-talk among both hormones and other possible intermediates (abscisic acid, calcium sensors, and reactive oxygen species) in response to B deficiency is provided and discussed.
ISSN:1664-462X