Digital Topological Properties of an Alignment of Fixed Point Sets

The present paper investigates digital topological properties of an alignment of fixed point sets which can play an important role in fixed point theory from the viewpoints of computational or digital topology. In digital topology-based fixed point theory, for a digital image <inline-formula>...

Full description

Bibliographic Details
Main Author: Sang-Eon Han
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/921
_version_ 1797566035979665408
author Sang-Eon Han
author_facet Sang-Eon Han
author_sort Sang-Eon Han
collection DOAJ
description The present paper investigates digital topological properties of an alignment of fixed point sets which can play an important role in fixed point theory from the viewpoints of computational or digital topology. In digital topology-based fixed point theory, for a digital image <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the set of cardinalities of the fixed point sets of all <i>k</i>-continuous self-maps of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> (see Definition 4). In this paper we call it an alignment of fixed point sets of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Then we have the following unsolved problem. How many components are there in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> up to 2-connectedness? In particular, let <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>l</mi> </mrow> </msubsup> </semantics> </math> </inline-formula> be a simple closed <i>k</i>-curve with <i>l</i> elements in <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>:</mo> <mo>=</mo> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>∨</mo> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula> be a digital wedge of <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </msubsup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula>. Then we need to explore both the number of components of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> up to digital 2-connectivity (see Definition 4) and perfectness of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> (see Definition 5). The present paper addresses these issues and, furthermore, solves several problems related to the main issues. Indeed, it turns out that the three models <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <msup> <mn>3</mn> <mi>n</mi> </msup> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <mi>k</mi> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>6</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> play important roles in studying these topics because the digital fundamental groups of them have strong relationships with alignments of fixed point sets of them. Moreover, we correct some errors stated by Boxer et al. in their recent work and improve them (see Remark 3). This approach can facilitate the studies of pure and applied topologies, digital geometry, mathematical morphology, and image processing and image classification in computer science. The present paper only deals with <i>k</i>-connected spaces in <i>DTC</i>. Moreover, we will mainly deal with a set <i>X</i> such that <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>X</mi> <mo>♯</mo> </msup> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>.
first_indexed 2024-03-10T19:21:10Z
format Article
id doaj.art-b3ced5e839f540a0a0225aa44fe23187
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T19:21:10Z
publishDate 2020-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b3ced5e839f540a0a0225aa44fe231872023-11-20T03:00:45ZengMDPI AGMathematics2227-73902020-06-018692110.3390/math8060921Digital Topological Properties of an Alignment of Fixed Point SetsSang-Eon Han0Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju-City Jeonbuk 54896, KoreaThe present paper investigates digital topological properties of an alignment of fixed point sets which can play an important role in fixed point theory from the viewpoints of computational or digital topology. In digital topology-based fixed point theory, for a digital image <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the set of cardinalities of the fixed point sets of all <i>k</i>-continuous self-maps of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> (see Definition 4). In this paper we call it an alignment of fixed point sets of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>X</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Then we have the following unsolved problem. How many components are there in <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> up to 2-connectedness? In particular, let <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>l</mi> </mrow> </msubsup> </semantics> </math> </inline-formula> be a simple closed <i>k</i>-curve with <i>l</i> elements in <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>:</mo> <mo>=</mo> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>∨</mo> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula> be a digital wedge of <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </msubsup> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mi>k</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> </mrow> </msubsup> </semantics> </math> </inline-formula> in <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>n</mi> </msup> </semantics> </math> </inline-formula>. Then we need to explore both the number of components of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> up to digital 2-connectivity (see Definition 4) and perfectness of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> (see Definition 5). The present paper addresses these issues and, furthermore, solves several problems related to the main issues. Indeed, it turns out that the three models <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <msup> <mn>3</mn> <mi>n</mi> </msup> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>4</mn> </mrow> </msubsup> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>C</mi> <mrow> <mi>k</mi> </mrow> <mrow> <mi>n</mi> <mo>,</mo> <mn>6</mn> </mrow> </msubsup> </semantics> </math> </inline-formula> play important roles in studying these topics because the digital fundamental groups of them have strong relationships with alignments of fixed point sets of them. Moreover, we correct some errors stated by Boxer et al. in their recent work and improve them (see Remark 3). This approach can facilitate the studies of pure and applied topologies, digital geometry, mathematical morphology, and image processing and image classification in computer science. The present paper only deals with <i>k</i>-connected spaces in <i>DTC</i>. Moreover, we will mainly deal with a set <i>X</i> such that <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>X</mi> <mo>♯</mo> </msup> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/6/921digital imagedigital wedgenormal adjacencyk-homotopyk-contractibilityalignment
spellingShingle Sang-Eon Han
Digital Topological Properties of an Alignment of Fixed Point Sets
Mathematics
digital image
digital wedge
normal adjacency
k-homotopy
k-contractibility
alignment
title Digital Topological Properties of an Alignment of Fixed Point Sets
title_full Digital Topological Properties of an Alignment of Fixed Point Sets
title_fullStr Digital Topological Properties of an Alignment of Fixed Point Sets
title_full_unstemmed Digital Topological Properties of an Alignment of Fixed Point Sets
title_short Digital Topological Properties of an Alignment of Fixed Point Sets
title_sort digital topological properties of an alignment of fixed point sets
topic digital image
digital wedge
normal adjacency
k-homotopy
k-contractibility
alignment
url https://www.mdpi.com/2227-7390/8/6/921
work_keys_str_mv AT sangeonhan digitaltopologicalpropertiesofanalignmentoffixedpointsets