Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
The equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></ma...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/10/1668 |
_version_ | 1797551085962919936 |
---|---|
author | Yves Brihaye Fabien Buisseret |
author_facet | Yves Brihaye Fabien Buisseret |
author_sort | Yves Brihaye |
collection | DOAJ |
description | The equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>symmetric potential depending on the temperature and on a complex scalar field <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. Allowing <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> to be dynamical opens the way to the study of spatially localized classical configurations of the scalar field. We first show that spherically symmetric static Q-balls exist in the range <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1.21</mn><mo>)</mo></mrow><mo>×</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean radius is always smaller than 10 fm. |
first_indexed | 2024-03-10T15:39:46Z |
format | Article |
id | doaj.art-b3d6dcbded1c44969d8cae9389c2c82a |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-03-10T15:39:46Z |
publishDate | 2020-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-b3d6dcbded1c44969d8cae9389c2c82a2023-11-20T16:56:10ZengMDPI AGSymmetry2073-89942020-10-011210166810.3390/sym12101668Gravitating Bubbles of Gluon Plasma above Deconfinement TemperatureYves Brihaye0Fabien Buisseret1Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, Place du Parc 20, 7000 Mons, BelgiumService de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université de Mons, Place du Parc 20, 7000 Mons, BelgiumThe equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>symmetric potential depending on the temperature and on a complex scalar field <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. Allowing <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> to be dynamical opens the way to the study of spatially localized classical configurations of the scalar field. We first show that spherically symmetric static Q-balls exist in the range <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1.21</mn><mo>)</mo></mrow><mo>×</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean radius is always smaller than 10 fm.https://www.mdpi.com/2073-8994/12/10/1668deconfinementMatter-gravity couplingYang–Mills theoryQ-ballboson star |
spellingShingle | Yves Brihaye Fabien Buisseret Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature Symmetry deconfinement Matter-gravity coupling Yang–Mills theory Q-ball boson star |
title | Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature |
title_full | Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature |
title_fullStr | Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature |
title_full_unstemmed | Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature |
title_short | Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature |
title_sort | gravitating bubbles of gluon plasma above deconfinement temperature |
topic | deconfinement Matter-gravity coupling Yang–Mills theory Q-ball boson star |
url | https://www.mdpi.com/2073-8994/12/10/1668 |
work_keys_str_mv | AT yvesbrihaye gravitatingbubblesofgluonplasmaabovedeconfinementtemperature AT fabienbuisseret gravitatingbubblesofgluonplasmaabovedeconfinementtemperature |