Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature

The equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></ma...

Full description

Bibliographic Details
Main Authors: Yves Brihaye, Fabien Buisseret
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1668
_version_ 1797551085962919936
author Yves Brihaye
Fabien Buisseret
author_facet Yves Brihaye
Fabien Buisseret
author_sort Yves Brihaye
collection DOAJ
description The equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>symmetric potential depending on the temperature and on a complex scalar field <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. Allowing <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> to be dynamical opens the way to the study of spatially localized classical configurations of the scalar field. We first show that spherically symmetric static Q-balls exist in the range <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1.21</mn><mo>)</mo></mrow><mo>×</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean radius is always smaller than 10 fm.
first_indexed 2024-03-10T15:39:46Z
format Article
id doaj.art-b3d6dcbded1c44969d8cae9389c2c82a
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T15:39:46Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-b3d6dcbded1c44969d8cae9389c2c82a2023-11-20T16:56:10ZengMDPI AGSymmetry2073-89942020-10-011210166810.3390/sym12101668Gravitating Bubbles of Gluon Plasma above Deconfinement TemperatureYves Brihaye0Fabien Buisseret1Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, Place du Parc 20, 7000 Mons, BelgiumService de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université de Mons, Place du Parc 20, 7000 Mons, BelgiumThe equation of state of SU(3) Yang–Mills theory can be modelled by an effective <inline-formula><math display="inline"><semantics><mrow><msub><mi>Z</mi><mn>3</mn></msub><mo>−</mo></mrow></semantics></math></inline-formula>symmetric potential depending on the temperature and on a complex scalar field <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula>. Allowing <inline-formula><math display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> to be dynamical opens the way to the study of spatially localized classical configurations of the scalar field. We first show that spherically symmetric static Q-balls exist in the range <inline-formula><math display="inline"><semantics><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mn>1.21</mn><mo>)</mo></mrow><mo>×</mo><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>T</mi><mi>c</mi></msub></semantics></math></inline-formula> being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean radius is always smaller than 10 fm.https://www.mdpi.com/2073-8994/12/10/1668deconfinementMatter-gravity couplingYang–Mills theoryQ-ballboson star
spellingShingle Yves Brihaye
Fabien Buisseret
Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
Symmetry
deconfinement
Matter-gravity coupling
Yang–Mills theory
Q-ball
boson star
title Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
title_full Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
title_fullStr Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
title_full_unstemmed Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
title_short Gravitating Bubbles of Gluon Plasma above Deconfinement Temperature
title_sort gravitating bubbles of gluon plasma above deconfinement temperature
topic deconfinement
Matter-gravity coupling
Yang–Mills theory
Q-ball
boson star
url https://www.mdpi.com/2073-8994/12/10/1668
work_keys_str_mv AT yvesbrihaye gravitatingbubblesofgluonplasmaabovedeconfinementtemperature
AT fabienbuisseret gravitatingbubblesofgluonplasmaabovedeconfinementtemperature