An embedding theorem for Campanato spaces
The purpose of this paper is to give a Sobolev type embedding theorem for the spaces $mathcal{L}_{p,q}^{lambda,s}(mathbb{R}^{n})$. The homogeneous versions of these spaces contain well known spaces such as the Bounded Mean Oscillation spaces (BMO) and the Campanato spaces $mathcal{L}^{2,lambda}$. Ou...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2002-07-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2002/66/abstr.html |
_version_ | 1818485227285118976 |
---|---|
author | Azzeddine El Baraka |
author_facet | Azzeddine El Baraka |
author_sort | Azzeddine El Baraka |
collection | DOAJ |
description | The purpose of this paper is to give a Sobolev type embedding theorem for the spaces $mathcal{L}_{p,q}^{lambda,s}(mathbb{R}^{n})$. The homogeneous versions of these spaces contain well known spaces such as the Bounded Mean Oscillation spaces (BMO) and the Campanato spaces $mathcal{L}^{2,lambda}$. Our result extends some injections obtained by Campanato [3,4], Strichartz [11], and Stein and Zygmund [10]. |
first_indexed | 2024-12-10T16:05:45Z |
format | Article |
id | doaj.art-b3dbdb3bc62b4b6eaf240bdd28934228 |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-10T16:05:45Z |
publishDate | 2002-07-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-b3dbdb3bc62b4b6eaf240bdd289342282022-12-22T01:42:16ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912002-07-01200266117An embedding theorem for Campanato spacesAzzeddine El BarakaThe purpose of this paper is to give a Sobolev type embedding theorem for the spaces $mathcal{L}_{p,q}^{lambda,s}(mathbb{R}^{n})$. The homogeneous versions of these spaces contain well known spaces such as the Bounded Mean Oscillation spaces (BMO) and the Campanato spaces $mathcal{L}^{2,lambda}$. Our result extends some injections obtained by Campanato [3,4], Strichartz [11], and Stein and Zygmund [10].http://ejde.math.txstate.edu/Volumes/2002/66/abstr.htmlSobolev embeddingsBMOCampanato spaces. |
spellingShingle | Azzeddine El Baraka An embedding theorem for Campanato spaces Electronic Journal of Differential Equations Sobolev embeddings BMO Campanato spaces. |
title | An embedding theorem for Campanato spaces |
title_full | An embedding theorem for Campanato spaces |
title_fullStr | An embedding theorem for Campanato spaces |
title_full_unstemmed | An embedding theorem for Campanato spaces |
title_short | An embedding theorem for Campanato spaces |
title_sort | embedding theorem for campanato spaces |
topic | Sobolev embeddings BMO Campanato spaces. |
url | http://ejde.math.txstate.edu/Volumes/2002/66/abstr.html |
work_keys_str_mv | AT azzeddineelbaraka anembeddingtheoremforcampanatospaces AT azzeddineelbaraka embeddingtheoremforcampanatospaces |