A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.

There is a recent increase in the use of multivariate analysis and pattern classification in prediction and real-time feedback of brain states from functional imaging signals and mapping of spatio-temporal patterns of brain activity. Here we present MANAS, a generalized software toolbox for performi...

Full description

Bibliographic Details
Main Authors: Mohit eRana, Nalin eGupta, Josue Luiz eDalboni da rocha, Sangkyun eLee, Ranganatha esitaram
Format: Article
Language:English
Published: Frontiers Media S.A. 2013-10-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnins.2013.00170/full
_version_ 1818523804480045056
author Mohit eRana
Mohit eRana
Mohit eRana
Nalin eGupta
Josue Luiz eDalboni da rocha
Sangkyun eLee
Ranganatha esitaram
Ranganatha esitaram
Ranganatha esitaram
author_facet Mohit eRana
Mohit eRana
Mohit eRana
Nalin eGupta
Josue Luiz eDalboni da rocha
Sangkyun eLee
Ranganatha esitaram
Ranganatha esitaram
Ranganatha esitaram
author_sort Mohit eRana
collection DOAJ
description There is a recent increase in the use of multivariate analysis and pattern classification in prediction and real-time feedback of brain states from functional imaging signals and mapping of spatio-temporal patterns of brain activity. Here we present MANAS, a generalized software toolbox for performing online and offline classification of fMRI signals. MANAS has been developed using MATLAB, LIBSVM and SVMlight packages to achieve a cross-platform environment. MANAS is targeted for neuroscience investigations and brain rehabilitation applications, based on neurofeedback and brain-computer interface (BCI) paradigms. MANAS provides two different approaches for real-time classification: subject dependent and subject independent classification. In this article, we present the methodology of real-time subject dependent and subject independent pattern classification of fMRI signals; the MANAS software architecture and subsystems; and finally demonstrate the use of the system with experimental results.* M. Rana and N. Gupta are equally contributing authors.
first_indexed 2024-12-11T05:49:17Z
format Article
id doaj.art-b3ef9758452244baa8fc84c51ac19cad
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-12-11T05:49:17Z
publishDate 2013-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-b3ef9758452244baa8fc84c51ac19cad2022-12-22T01:18:52ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2013-10-01710.3389/fnins.2013.0017057290A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.Mohit eRana0Mohit eRana1Mohit eRana2Nalin eGupta3Josue Luiz eDalboni da rocha4Sangkyun eLee5Ranganatha esitaram6Ranganatha esitaram7Ranganatha esitaram8Institute of medical psychology and behavioral neurobiologyGraduate School of Neural & Behavioural Sciences | International Max Planck Research SchoolUniversity of FloridaIndian Institute of Technology KharagpurUniversity of FloridaMax plank institute for biological cyberneticsInstitute of medical psychology and behavioral neurobiologyUniversity of FloridaSree Chitra Tirunal Institute for Medical Sciences & TechnologyThere is a recent increase in the use of multivariate analysis and pattern classification in prediction and real-time feedback of brain states from functional imaging signals and mapping of spatio-temporal patterns of brain activity. Here we present MANAS, a generalized software toolbox for performing online and offline classification of fMRI signals. MANAS has been developed using MATLAB, LIBSVM and SVMlight packages to achieve a cross-platform environment. MANAS is targeted for neuroscience investigations and brain rehabilitation applications, based on neurofeedback and brain-computer interface (BCI) paradigms. MANAS provides two different approaches for real-time classification: subject dependent and subject independent classification. In this article, we present the methodology of real-time subject dependent and subject independent pattern classification of fMRI signals; the MANAS software architecture and subsystems; and finally demonstrate the use of the system with experimental results.* M. Rana and N. Gupta are equally contributing authors.http://journal.frontiersin.org/Journal/10.3389/fnins.2013.00170/fullClassificationNeurofeedbackSVMmultivariate analysispattern recognitionfMRI BOLD
spellingShingle Mohit eRana
Mohit eRana
Mohit eRana
Nalin eGupta
Josue Luiz eDalboni da rocha
Sangkyun eLee
Ranganatha esitaram
Ranganatha esitaram
Ranganatha esitaram
A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
Frontiers in Neuroscience
Classification
Neurofeedback
SVM
multivariate analysis
pattern recognition
fMRI BOLD
title A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
title_full A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
title_fullStr A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
title_full_unstemmed A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
title_short A toolbox for real-time subject-independent and subject-dependent classification of brain states from fMRI signals.
title_sort toolbox for real time subject independent and subject dependent classification of brain states from fmri signals
topic Classification
Neurofeedback
SVM
multivariate analysis
pattern recognition
fMRI BOLD
url http://journal.frontiersin.org/Journal/10.3389/fnins.2013.00170/full
work_keys_str_mv AT mohiterana atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT mohiterana atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT mohiterana atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT nalinegupta atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT josueluizedalbonidarocha atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT sangkyunelee atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram atoolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT mohiterana toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT mohiterana toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT mohiterana toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT nalinegupta toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT josueluizedalbonidarocha toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT sangkyunelee toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals
AT ranganathaesitaram toolboxforrealtimesubjectindependentandsubjectdependentclassificationofbrainstatesfromfmrisignals