Summary: | This article studies the entropy generation of a mass-spring-damper mechanical system, under the conformable fractional operator definition. We perform several simulations by varying the fractional order <inline-formula> <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> </inline-formula> and the damping ratio <inline-formula> <math display="inline"> <semantics> <mi>ζ</mi> </semantics> </math> </inline-formula>, including the usual dynamic response when <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics> </math> </inline-formula> and the typical damping cases. We analyze the entropy production for this system and its strong dependency on both <inline-formula> <math display="inline"> <semantics> <mi>γ</mi> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mi>ζ</mi> </semantics> </math> </inline-formula> parameters. Therefore, we determine their optimal values to obtain the highest efficiency of the MSD response, as well as other impressive features.
|